A,

| =Y e

a3 I 56 o
Urrg AeT Qus galeatret
ufenms

JAGAT GURU NANAK DEV
PUNJAB STATE OPEN UNIVERSITY, PATIALA

(Established by Act No. 19 of 2019 of the L egislature of State of Punjab)

The Motto of the University
(SEWA)

SKILL ENHANCEMENT EMPLOYABILITY WISDOM
ACCESSIBILITY

<
-
<
<
o
2
o
&
=
9]
Q
T
=
=
n
l_
T
O
4
>
o
O
O

M.SC. (COMPUTER SCIENCE)
SEMESTER-II
Course: DATA STRUCTURE & ALGORITHMS (MSCS-2-02T)

ADDRESS: C/28, THE LOWER MALL, PATIALA-147001
WEBSITE: www.psou.ac.in

SELF-INSTRUCTIONAL

http://www.psou.ac.in/

gﬂi‘ﬁ% JAGAT GURU NANAK DEV

p — PUNJAB STATE OPEN UNIVERSITY PATIALA

.
(Established by Act No.19 of 2019 of L egislature of the State of Punjab)

s e
e miE Bun mEfeataet
uf s

M.Sc. (Computer Science) Programme Coordinator:
Dr. Karan Sukhija (Assistant Professor)

School of Sciences and Emerging Technologies

JGND PSOU, Patiala

Faculty of School of Science and Emerging Technologies:
Dr. Baljit Singh Khera (Head)

Professor, School of Sciences and Emerging Technologies
Jagat Guru Nanak Dev Punjab State Open University, Patiala
Dr. Kanwalvir Singh Dhindsa

Professor, School of Sciences and Emerging Technologies
Jagat Guru Nanak Dev Punjab State Open University, Patiala
Dr. Amitoj Singh

Associate Professor, School of Sciences and Emerging Technologies
Jagat Guru Nanak Dev Punjab State Open University, Patiala
Dr. Monika Pathak

Assistant Professor, School of Sciences and Emerging Technologies
Jagat Guru Nanak Dev Punjab State Open University, Patiala
Faculty of School of Business Management & Commer ce:
Dr. Pooja Aggarwal

Assistant Professor, School of Business & Commerce

Jagat Guru Nanak Dev Punjab State Open University, Patiala
Faculty of School of Social Sciencesand Liberal Arts:

Dr. Pinky Sra

Assistant Professor, School of Social Sciences and Liberal Arts
Jagat Guru Nanak Dev Punjab State Open University, Patiala

DA

JAGAT GURU NANAK DEV

PUNJAB STATE OPEN UNIVERSITY PATIALA
(Established by Act No.19 of 2019 of L egislatur e of the State of Punjab

AT 3 #res 7‘.‘@
ufemmar

PROGRAMME COORDINATOR

Dr. Karan Sukhija (Assistant Professor)

School of Sciences and Emerging Technologies
JGND PSOU, Patiala

COURSE COORDINATOR & CONTENT WRITER:

Dr. Amitoj Singh

Associate Professor, School of Sciences and Emerging Technologies
Jagat Guru Nanak Dev Punjab State Open University, Patiala

COURSE OUTCOMES (COs)

After Completion of the course, learners will be able to

Course: Data Structure & Algorithms

Course Code: MSCS-Z2-02T

Course Chatcomes (C0ks)
After the completion of this course, the students will be able to;

CO1 | Understand basic data structures such as arrays, linked lists, stacks and queunes.

C02 | Solve problem imvolving graphs, trees and heaps.

C03 | Descnbe the hash function and concepts of collision and its resolution.

CO4 | Apply Algorithm for solving problems like sorting, searching, insertion and deletion of
data.

CO5 | Design algorithm i comtext of space and time complexity and apply- asymptotic

fuoiatao.

St
) —— JAGAT GURU NANAK DEV
PUNJAB STATE OPEN UNIVERSITY PATIALA
T A (Established by Act No.19 of 2019 of L egislatur e of the State of Punjab)
oy 5ie ?HE EsAEE el

PREFACE

Jagat Guru Nanak Dev Punjab State Open University, Patiala was established in Decembas
2019 by Act 19 of the Legislature of State of Punjab. It is the first and only Open Universit of
the State, entrusted with the responsibility of making higher education accessible to all
especialy to those sections of society who do not have the means, time or opportunity to

pursue regular education.

In keeping with the nature of an Open University, this University provides a flexible education
system to suit every need. The time given to complete a programme is double the duration of a
regular mode programme. Well-designed study material has been prepared in consultation with

expertsin their respective fields.

The University offers programmes which have been designed to provide relevant, skill-based
and employability-enhancing education. The study material provided in this booklet is self
instructional, with self-assessment exercises, and recommendations for further readings. The

syllabus has been divided in sections, and provided as units for simplification.

The Learner Support Centres/Study Centres are located in the Government and Government
aided colleges of Punjab, to enable students to make use of reading facilities, and for
curriculum-based counselling and practicals. We, at the University, welcome you to be a part of

thisinstitution of knowledge.

Prof. G. S. Batra,
Dean Academic Affairs

DATA STRUCTURE & ALGORITHMS

TotalMarks:100
External Marks:70
Internal Marks:30
Credits:4

Pass Percentage:40%

Section A

Unit |: Data Structure: Introduction to data structure and algorithm, various phases of
algorithms, Pointers, working with pointers, pointers and function, structure, union,
classification of data structures Algorithm analysis: Time space trade off algorithms and Big O
notation.

Unit Il: Arrays: Introduction, one dimensiona and multidimensional arrays, memory
representation of arrays, operations on arrays, sparse arrays and sparse matrices and their
implementation, Advantages and limitation of arrays.

Unit I1: Linked List: Introduction; operation on linked list, circular linked list, doubly linked
list, headerlinked list, implementation of linked list, application of linked lists.

Unit 111: Stacks: Introduction; array representation of stacks, Operation on stacks; Linked
representation of stacks Implementation of stacks, Application of stacks: matching parenthesis,
evauation of arithmetic expressions, and conversion from infix to post fix, recursion.

SECTION B
Unit 1V: Queues: Introduction, operation on queues, linked representation & implementation
of queue, Applications of queues, circular queue, memory representation of queues, dequeus,
priority queues, Multiple queues, application of queues.

Unit V: Trees: Introduction; Binary Tree;, Complete Binary Trees, Extended Binary Trees,
representation of binary trees in the memory , traversing a binary tree, Binary Search Tree,
Operations on Binary Search Tree; Balanced Trees- AVL; B- Trees, Heap, Applications of
trees

Unit VI: Graphs: Introduction Graph: Graph terminology, Memory Representation of Graphs:
adjacency matrix representation of graphs, adjacency list or linked representation of graphs,
graph traversal algorithms, Operations performed ongraphs.

Unit VII: Searching: Linear Search, Binary Search, Fibonacci Search, Sorting : Selection
Sort, Insertion Sort, Merge Sort, Bucket Sort, Radix Sort, Quick Sort and Heap Sort

Reference Books:

A.Tanenbaum,Y .LanhgsamandA .J.Augenstein,” Data Structures UsingC",PHI.
Loomis,Marry,“Data Management and File Structures”, PHI

Seymour Lipschultz,” Theory and Practice of Data Structures" Mc Graw-Hill.
E.Horowitz and S.Sahni, “Data Structures with Pascal",Galgotia.

M.J.Folk, B.Zodllick, G Riccardi, File Structures”, Pearson Education.

agrwpnhE

M.Sc. (Computer Science)
SEMESTER-2
COURSE: DATA STRUCTURE AND ALGORITHMS

UNIT 1: INTRODUCTION TO DATA STRUCTURE

1.1. INTRODUCTION

1.2. CLASSIFICATION OF DATA STRUCTURE
1.3.LINKED LIST

1.4. STACK

1.5. QUEUE

1.6. TREE

1.7. GRAPH

1.8. ALGORITHM DEVELOPMENT PROCESS

1.1 INTRODUCTION

¢ Data Structuresis the concept of set of a gorithms used to structure the information.
¢ These agorithms are implemented using C, C++, Java, etc

e Structure the information means store and process datain an efficient manner.

e To store and process data we may use the following operations

e cCreate()

e sorting()

e insert()

e merging()
o deete)

o gplitting()
e display()
o traversal()

e searching()
e S0 data structure may contain algorithms, use for different operations implement these
algorithms by aprogramming language
¢ For example for stack data structure write algorithms for different

operations
e Push
° Pop
e Display

1.2 CLASSIFICATION OF DATA STRUCTURES:
¢ Data structures are normally classified into two types.
¢ They are primitive data structures and non-primitive data structures.
(i) Primitivedatastructures:
¢ Primitive data structures are built in types in most programming languages. They are
e Integer: It iswhole numbers. i.e. negative values,0,positive values
e Float: It isfractional numbers
e Character: It ischaracter values
¢ Boolean: it representstrue or false.
(i) Non-primitivedata structures:
¢ These are derived from primitive data structures.
¢ They are Array, Structure, Union, Files etc
o A Non-primitive datatype is further divided into Linear and Non-Linear data structure.
@ Linear data structures:
¢ Here the data elements are connected in a sequence manner.
e Examples are Arrays, Linked List, Stacks and Queues.
Array:
> It is collection of elements of the same type
0 1 2 3 A

n[q=|1n‘m|3:-|dn|ﬁn

Linked Ligt:

e linked list or single linked list is a sequence of elements in which every element has link to its
nextelement in the sequence.

e Every element iscaled asa"node". Every "node" contains two fields, data and link. The data
isavalueor string and link is an address of next node.

e Thefirst nodeis called HEAD which is an empty node contains an address of the first node so it
link tothe first node.

¢ Thefirst node link to the second node and so on.

¢ Thelast node does not link to address but link to NULL. Let ptr be a pointer to the linked
list. Theexample is given below

[HEAD] pi‘r [NULL]

10 | —+—| 20 | ——| 40 | —4—]| 50

Stack:

e A stack is adata structure in which additions and deletions are made at the top of the stack. So
we canperform two operations on stack.

1. Adding elements into the
stack known as push;2.Deleting
elements from the stack known as pop

- top

ol

i

Queue
A queue is a data structure in which additions are made at one end and del etions are made
at the otherend. We can represent aqueue in an array.
Here we can perform two operations on queue.
1. Adding e ementsinto the queue known as
insertion at rear 2.Deleting elements from the queue
known as del etion from front

AlB|l|C| c|lD
0 1 2 3 4

!

f:Enl niar

quee

(b) Non-linear data structures:
» Here dataelements are not connected in a sequence manner.
» Examplesare: Trees and Graphs.

Tree:
> Thetreeis defined as afinite set of one or more
nodes such that1.0One node is called aroot node and
2. Remaining nodes partitioned into sub trees of the root.
Levell
(A)

5) ©)
& é\@s

® © 4

Graph:
<> A graph isapictorial representation of a set of points or nodes termed as vertices, and
the links thatconnect the vertices are called edges.

X4 A Graph(G) consists of two setsV and E where V iscalled vertices and E is called edges.

We also writeG = (V,E) to represent a graph.

X4 A Graph may be directed graph and undirected graph.

\> ® P% ®
(a) G (b) G,

(C) Gs

X4 The Fig(a),Fig(b) are called undirected graph & Fig(c) is called directed graph.
Differences between Linear and Non Linear Data Structures:

Linear Data Structure Non-Linear Data Structure

Every data element is connected to its Every data element is connected with many other

previous & data elements.

next one

Datais arranged in a sequence manner Datais not arranged in a sequence manner

Data can be traversed in asingle run Data cannot betraversed inasinglerun

Ex: Array, Stack, Queue, Linked List Ex: Tree, Graph

Implementation is easy Implementation isdifficult

1.3ALGORITHM DEVELOPMENT PROCESS
Every problem solution starts with aplan. That planis called an algorithm.
1.3.1 An algorithm isaplan for solving a problem.

There are many ways to write an a gorithm. Some are very informal, some are quite formal and
mathematical in nature, and some are quite graphical. The instructions for connecting aDV D player
to a television are an algorithm. A mathematical formula such as tR2 is a special case of an
algorithm. The formis not particularly important as long as it provides a good way to describe and
check the logic of the plan.

The development of an algorithm (a plan) is akey step in solving a problem. Once we have an
algorithm, we can tranglate it into a computer program in some programming language. Our algorithm
devel opment process consists of five major steps.

Step 1: Obtain a description of the problem.
Step 2: Anayze the problem.

Step 3: Develop a high-level algorithm.

Step 4: Refine the a gorithm by adding more detail.
Step 5: Review the agorithm.
Step 1: Obtain a description of the problem.

This step is much more difficult than it appears. In the following discussion, the word client refersto
someone who wants to find a solution to a problem, and the word devel oper refersto someone who
finds away to solve the problem. The developer must create an algorithm that will solve the client's
problem.

Theclient isresponsible for creating a description of the problem, but thisis often the weakest part of
the process. It's quite common for a problem description to suffer from one or more of the following
types of defects: (1) the description relies on unstated assumptions, (2) the description is ambiguous,
(3) the description isincomplete, or (4) the description has internal contradictions. These defects are
seldom due to carelessness by the client. Instead, they are due to the fact that natural languages
(English, French, Korean, etc.) are rather imprecise. Part of the developer's responsibility isto identify
defectsin the description of a problem, and to work with the client to remedy those defects.

Step 2: Analyze the problem.

The purpose of this step isto determine both the starting and ending points for solving the problem.
This process is analogous to a mathematician determining what is given and what must be proven. A
good problem description makes it easier to perform this step.

When determining the starting point, we should start by seeking answers to the following questions:
What data are available?

Whereis that data?

What formulas pertain to the problem?

What rules exist for working with the data?

What rel ationships exist among the data values?

When determining the ending point, we need to describe the characteristics of a solution. In other
words, how will we know when we're done? Asking the following questions often hel ps to determine
the ending point.

What new facts will we have?

What items will have changed?

What changes will have been made to those items?
Wheat things will no longer exist?

Step 3: Develop a high-level algorithm.

An agorithm isa plan for solving a problem, but plans come in several levels of detail. It's usually
better to start with ahigh-level algorithm that includes the major part of a solution, but leaves the
details until later. We can use an everyday example to demonstrate a high-level algorithm.

Problem: | need a send a birthday card to my brother, Rohit .

Analysis: | don't have a card. | prefer to buy a card rather than make one myself.
High-level algorithm:

Go to astore that sells greeting cards

Select acard

Purchase acard

Mail the card

Thisagorithm is satisfactory for daily use, but it lacks details that would have to be added were a
computer to carry out the solution. These details include answers to questions such as the following.

"Which store will | visit?'

"How will I get there: walk, drive, ride my bicycle, take the bus?"
"What kind of card does Rohit like: humorous, sentimental, risqué?”
These kinds of details are considered in the next step of our process.
Step 4: Refinethe algorithm by adding mor e detail.

A high-level algorithm shows the major steps that need to be followed to solve a problem. Now we
need to add details to these steps, but how much detail should we add? Unfortunately, the answer to
this question depends on the situation. We have to consider who (or what) is going to implement the
algorithm and how much that person (or thing) already knows how to do. If someoneis going to
purchase Rohit's birthday card on my behalf, my instructions have to be adapted to whether or not that
person is familiar with the stores in the community and how well the purchaser known my brother's
taste in greeting cards.

When our goal isto develop algorithms that will lead to computer programs, we need to consider the
capabilities of the computer and provide enough detail so that someone else could use our algorithm
to write a computer program that follows the stepsin our agorithm. Aswith the birthday card
problem, we need to adjust the level of detail to match the ability of the programmer. When in doubt,
or when you are learning, it is better to have too much detail than to have too little.

Most of our examples will move from a high-level to adetailed algorithm in asingle step, but thisis not
always reasonable. For larger, more complex problems, it is common to go through this process
several times, devel oping intermediate level algorithms as we go. Each time, we add more detail to
the previous algorithm, stopping when we see no benefit to further refinement. This technique of
gradually working from a high-level to a detailed algorithm is often called stepwise refinement.

Stepwise refinement is a process for developing a detailed a gorithm by gradually adding detail to a
high-level agorithm.

Step 5: Review the algorithm.

Thefinal step isto review the algorithm. What are we looking for? First, we need to work through the
algorithm step by step to determine whether or not it will solve the original problem. Once we are
satisfied that the algorithm does provide a solution to the problem, we start to look for other things.
The following questions are typical of onesthat should be asked whenever we review an algorithm.
Asking these questions and seeking their answersis a good way to develop skills that can be applied
to the next problem.

Does this algorithm solve a very specific problem or does it solve a more general problem? If it solves a
very specific problem, should it be generalized.

Pointers

A pointer isavariable that stores the address of another variable. Unlike other variables that hold
values of a certain type, pointer holds the address of avariable. For example, an integer variable holds
(or you can say stores) an integer value, however an integer pointer holds the address of a integer
variable.

A simpleexampleto under stand how to accessthe addr ess of a variablewithout
pointer s?

In this program, we have a variable num of int type. The value of hum is 10 and this value must
be stored somewhere in the memory, right? A memory spaceisallocated for each variable that
holdsthevalue of that variable, this memory space has an address. For example welivein a
house and our house has an address, which helps other people to find our house. The same way
the value of the variable is stored in amemory address, which helps the C program to find that
value when it is needed.

So let’s say the address assigned to variable num is Ox7fff5694dc58, which means whatever value
wewould be assigning to num should be stored at the location: 0x7fff5694dc58. See the diagram
below.

#i ncl ude <stdi o. h>
int main()

int num = 10;
printf("Value of variable numis: %", num;

/* To print the address of a variable we use %
* format specifier and anpersand (&) sign just
* before the variable nane |ike &um
*/
printf("\nAddress of variable numis: %", &un;
return O;

}
Output:

Val ue of variable numis: 10
Address of variable numis: Ox7fff5694dc58

num Variable name
10 Value of num

_ Address of num

Ox7Hf5694dc58

M.Sc. (Computer Science)
SEMESTER-2
COURSE: DATA STRUCTURE AND ALGORITHMS

UNIT 2: LINKED LIST

2.1. INTRODUCTION

2.2. SINGLE LINKED LIST

2.3. OPERATIONS

2.4. APPLICATIONSON SINGLE LINKED LIST

2.5.DOUBLE LINKED LIST

2.6. CIRCULAR LINKED LIST

21 INTRODUCTION

A linked list is a collection of data elements called nodes in which the linear representation is given
by links from one node to the next node. A linked list does not store its elements in consecutive
memory locations and the user can add any number of elementsto it.

The elementsin alinked list can be accessed only in a sequential manner. But like an array, insertions
and deletions can be done at any point in the list in a constant time.

A linked list, in simple terms, is a linear collection of data elements. These data elements are called
nodes. Linked list is a data structure which in turn can be used to implement other data structures.

Thus, it acts as a building block to implement data structures such as stacks, queues, and their
variations.

Basic Terminology:

A linked list can be perceived as a train or a sequence of nodes in which each node contains one or
more data fields and a pointer to the next node.

T3 EI A B A

We can see alinked list in which every node contains two parts, an integer and a pointer to the next
node. The last node will have no next node connected to it, so it will store a special value caled
NULL.

Sincein alinked list, every node contains a pointer to another node which is of the same type, it is
alsocalled a self-referential datatype.

Let us see how alinked list is maintained in the memory. When we traverse DATA and NEXT in this
manner, we finaly see that the linked list in the above example stores characters that when put
together form the word HELLO.

START
Data Mext
e — H 4
-
3
4 E 7
5
&
T B
H L 10
a9
10 o -1

Linked ListsversusArrays:

Both arrays and linkedlists are a linear collection of data elements. But unlike an array, a linked list
does not store its nodes in consecutive memory

locations. Another point of difference between an array and a linked list is that a linked list does not
allow random access of data. Nodesin alinked list can be accessed only in a sequential manner.

Another advantage of alinked list over an array isthat we can add any number of elements in the
list. Thisisnot possible in case of an array.

Memory Allocation and De-allocation for a Linked List:

If we want to add a node to an already existing linked list in the memory, we first find free space in
the memory and then use it to store the information.

Now, the question is which part of the memory is available and which part is occupied? When we
delete a node from a linked list, then who changes the status of the memory occupied by it from
occupied to available? The answer is the operating system.

The operating system scans through all the memory cells and marks those cells that are being used by
some program. Then it collects al the cells which are not being used and adds their address to the
free pool, so that these cells can be reused by other programs. This process is caled garbage
collection.

2.2 SINGLE LINKED LISTS:

A singly linked list is the smplest type of linked list in which every node contains some data and a
pointer to the next node of the same datatype.

START

> 1 > 2 > 3 > 4 » 5 > 6 » 7 | X

Traversing a linked list means accessing the nodes of the list in order to perform some processing on
them. Remember alinked list always contains a pointer variable START which stores the address of
thefirst node of the list. End of the list is marked by storing NULL or —1 in the NEXT field of the
last node.

2.3 OPERATIONS
Traversingalinked Ligt:

For traversing the linked list, we also make use of another pointer variable PTR which points to the
node that is currently being accessed. Algorithm for traversing a linked list

Step 1: [INITIALLZE| SET PTR = START
Step 2: Repeat Steps 3 and 4 while PTR |= NULL
step 3. Apply Process to PTR->DATA

T Step 4: SET PTR = PTR-:MEXT

(END OF LOOP|
L tep 5: EXIT

Searching for aValuein aLinked List:

Searching a linked list means to find a particular element in the linked list. So searching means
finding whether a given value is present in the information part of the node or not. If it is present,
the algorithm returns the address of the node that contains the value. However, if the search is
unsuccessful, POS is set to NULL whichindicates that VAL is not present in the linked list.

Consider the linked list shown in below. If we have VAL = 4, then the flow of the agorithm can be
explained as shown in the figure.

3 > 7 = 3 > 4 > 2 > & = 5 [X
FTR
Herg PTR —» DATA = 7. Since PTR —» DATA !m 4, we mowve to the next node.
1| —4—m 7 » 3 = A4 * b = 5 | X
PTR
Here PTR —> DATA = 3. Since PTR —> DATA != 4, we move to the next node.
1| ——» 7 — = 3 ——= 4| —— 2 — = B | ——= 5 | X
FTR

Here PTR —> DATA = 4. Sinmce PFTR —> DATA = 4, PD5 = PTR. P05 now stores
the address of the node that contains VAL

Step 1: [INITIALIZE) SET PTR = START
Step 2: Repeat Step 3 while FTR != HNULL

Step 3: IF WAL = PTR —=DATA
SET P05 = PTR
Lo To 5tep S

ELSE

SET PTR = PTR —=MNEXT
[END OF IF]
[END OF LOOP]
step 4: SET POS = NULL
Step S5: EXIT

Insertinga New Nodein aLinked List:

we will see how a new node is added into an already existing linked list. We will take four cases and
then see how insertion is done in each case.

Case 1: The new node isinserted at the beginning.Case
2: The new nodeisinserted at the end.

Case 3: The new nodeisinserted after a given node.
Case 4: The new node isinserted before a given node.

Let us first discuss an important term called OVERFLOW. Overflow is a condition that occurs when
AVAIL = NULL or no free memory cell is present in the system. When this condition occurs, the
program must give an appropriate message.

Case 1: Inserting a Node at the Beginning of a Linked List

Inserting a Node at the Beginning of a Linked List. Consider the linked list shown in below figure.
Suppose we want to add a new node with data9 and add it asthe first node of the list.

:L——'.l-|'|"' o —|—’-d - = B = 5 | ¥
START
Allneate memory for the new node and inftialirze its DATA part to 9.

[2]]

&dd the new node as the first node of the list by making the KEXT part of the new
node contain the address of START,

0| -1 w7 3| e w2 8| >5|x

S5TART

Now make START to point to the first node of the list.

¥
L
Im

4 = 1l | 7 = = 2 > b
START

Step 1: IF AVATIL = NULL
Write OVMERFLOW
Go to Step 7
[END OF IF]

Step 2: SET NEW MODE = AVATIL

Step 3: SET AVAIL = AVATIL —>=HEXT
Step 4@ S5ET NEW_MNODE —= DATA = VAL
Step 5: SET MNEW_MNODE —= NEXT = START
Step 6: SET START = NEW_NODE

Step T: EXIT

Case 2: Inserting a Node at the End of aLinked List

w
i
¥
o)
w
i
¥
Bk
L3
L1
L
(¥
-

1
START

&llocate memory for The new node and initialize its DATA part to 9 and
MEXT part fta MNULL.

Take a podnter varisble PTR which points to START,

1| 47 = 3 >l 4 | 2 > & =5 | x|
START, PTR
Move PTR so that it points to the last node of the list,

1| {7 > 3 > 4 > 2 > & -5 | x|

START PR

Add the new node after the node pointed by PTR. This is done by storing the address
of the mew node in the MEXT part of PTR.

W
[
L

&
v
L
L
u
b

1 > T > 3 = 4
START ST

Step 1: IF AVAIL = MLULL
Write OWVERFLOW
Ga to Step 10
[END OF IF]
Step 2: SET NEW_NIDE = AVATL
Step 3I: SET AVAIL = AVATL — = NEXT
Step 4: SET NEW_HNODE —=DATA = WAL
Etep 5: SET NEW_NODE — = MEXT = MULL
Step 61 SET PTR = START
Shep 7: Repert Step # while PTR— = MEXT I= KL
Step B: SET PTR = PTR — = MNEXT
[END OF LOoOP]
Step 9: SET PTR — = NEXT = MEW_NODE
Step 18: EXIT

Case 3: Inserting a Node After a Given Nodein a Linked List

Consider the linked list shown in below figure. Suppose we want to add a new node with value 9 after
the node containing 3.

"

w
e
w
ih
w
W
e

L 3
LY
k3

1 > 7

START
Allocate memory for the new node and indtialize its DATA part to 9.

9

Take two pointer variables PTR and PREPTR and initialize them with START
so that 5TART, PTR, and PREPTR point to the first node of the list.

1 > 7 o] = 4 "‘1_"'|'i B I

START
PTR
FREPTR

Move PTR and PREPTR until the DATA part of PREPTRE = walue of the node
after which insertion has to0 be done. PREPTR will always point t5 the
node just before PTR.

1 =T = 3 = 4 o = 0 > 5 | K
START PREPTR FTR

1 i T = 1 —= 4 - 2 = b ——= & X
ETﬁﬁ;__ PREPTR PTR o

Add the new node in between the nodes pointed by PREFTR and PTR,

E e il o ER NN PSR o i i e EHE

START PREPTR

L 3

EXN

MEW_NODE
1 > 7 » 3 > g > 4 » 2 » 6 SHIE
START

Step 1: IF AVAIL = NLULL
Write CWERFLOW
Ga to Step 10
[END OF IF]

Step 2: SET NEW_NODE = AVATL

Step 3: SET AVAIL = AVAIL —=MNEXT

Step 4: SET NEW_NODE —=DATA = WAL

Step S5: SET NEW_NODE — > MEXT = MILL

Step &: SET PTR = START

Step 7: Repwaat Stap B whils PTR - = NEXT 1= MILI
B:

SET PTR = PTR - =NEXT
[END OF LOOP]
Step 9: SET PTR - =NEXT = MNEW_NODE
Step 18: EXIT

Step

Case4: Inserting a Node Before a Given Nodein aLinked List

Consider the linked list shown in below figure. Suppose we want to add a new node with value 9
before the node containing 3.

3

¥
hd
¥
th
R
1
-

o e

START
Allocate mesory For the new node and initialize its DATA part to 9.

A

¥

ki

Initialize PREPTR and PTR to the START node.

1——l-|?' ——--I':'l ——= 4 o

START
PTH
FREPTEH

i
(el
v
A
s

Insert the new node in between the nodes pointed by PREFPTR and PTR.

I e O O 2 e e 0 S e s T B s
STaRT PREFTR " PTR
L 3
L] |
MEW MODE
1 = 7 | 9 = 3 = 4 - 2 * & = 5 | X
START

Mowe PTR and PREPTR untll the DATA part of PTR = value of the node
before which insertlon has to be done, PREPTR will always point To
the node just before PTR.

1—|—-? | 3| e 2| 2 ol 6 | ——| 5| %
START PREPTR PTR

Step 1: IF AvATL = MILL

Welte OVERFLOW

G0 to Step 12

[END OF IF]

Step 2: SET MEW NODE = AVATL
Step 3: SET AVAIL = AVWAIL - = MEXT
Step &: SET MEW NODE —>DATA = VAL
Step 52 SET PTR = S5TART
Step A2 SET PREPTR = PTH
Step 7: Repest Steps B and 9 while PTR-=DATA |= MM

Step B: SET PREPTR = PTR
Step 9: SET PTR = PTR - NEXT
[END OF LOOP]

Step 10: PREFTR—>MEXT = MEW MODE

S5tep 11: S5ET MEW_NDOE - = NEXT = FIR

Step 12: EXIT
g —]

Deleting a Nodefrom aLinked List:

We will discuss how anode is deleted from an already existing linked list. We will consider three
casesand then see how deletion is done in each case.

Case 1; Thefirst nodeis
deleted.Case 2: Thelast node
is deleted.

Case 3: The node after agiven node is deleted.

Case 1: Deleting aFirst Nodefrom a Linked List

2] Tg=ir] (3] s F>2] g6 F+[5]|x]

START
Make START to point to the pewt node in sequence,

[7] {2 J—={a] F—={2] J>{6] J=s]x]

START

Step 1: IF START = NULL

Write UNDERFLOW

Go to Step 5

[END OF IF]

Step 2: SET PTR = START
Step 3 SET START = START —> NEXT
Step 4. FREE PTR
Step 5: EXIT

Case 2: DeetingthelLast Nodefrom aLinked List

Y
P
¥

1| » 7 w 2] | a2

6| ——»1 s | x
START

Take pointer wariables PTR and PREPTR which imitially point to START.

|:L w7 | =3 4 » 2 r—r&——b-|5}l:

S5TART
PREPTR
FTR

Move PTR and PREPTR such that NEXT part of FTR = NULL. PREPTR always points
to the node just before the node pointed by PTR.

5| X

'll'

1| 4= 7 = 3 = A B 2 = &
START PREPTR PTR

Set the MEXT part of PREPTR node to NULL.

1 | =l 7| = 3 .‘-'-d——h-|1 ——1-|E.:-c

START

Step 1: IF START = NULL
Write UNDERFLOHW
o3 to Step B
[END ©F IF]
Step 2: SET PTR = STAAT
Step 3. Repeat Steps 4 and 5 while PTR—=MEXT [= MULL

Step 4: SET PREPTR = PTR
Step 5 SET PTR = PTR->MEXT
[END OF LOOP]

Step 6: SET PREPTR->NENT = MULL

Step 7: FREE PTR
step B: EXIT

Case 3: Deleting After aGiven Nodein aLinked List

Consider the linked list shown in below figure. Suppose we want to del ete the node that succeeds the
node which contains data val ue 4.

2| =7 g2] el e | 1> E [¥]

START

Take pointer wariables PTR and PREPTR which initially point to START.
1 ——!I-| i —l—)— 3 | i ——= 2 = G —= &5 | ¥
START
PREPTR

PTR

Move PREPTE and PTR such that PREFTR points to the node containing WAL
and PTR points to the succeeding node:

1 = T = 3 = g = 2 = & | 5 »
START PREPTER PTH
[F—{7 T] F=a] F=z] F={s] F={s]x]
START PREPTH PTR
S I e B s I B s A B s B s N e e EH E D
START PRERPTR PTH

Set the NEXT part of PREPTR to the MEXT part of PTH.

L2l 7] g3 sl | [2] | [el—F={s]x]
START PREFTR PTR +

s T S S B e B I e [I oy N D

START

Step 1; IF START = HULL
Write UMDERFLOW
Go te Step 10
[END OF IF]
Step 2: SET PTR = STARTY
Step 3. SET PREPTR = PTR
Step 41 Repeat Steps 5 and 6 wWhile PREPTR —-=[DATA |= KUK
Step 5 SET PREFTR = PTR
Step b SET PTR = FTR —=HMEXT
[END OF LDGPF]
Step 7i S5ET TEMP = PTR
Step Bi S5ET PREPTR —= NEXT = PTH —= BEXT
tep 9; FREE TEHWP
Step 10: EXIT

24 APPLICATIONSON SINGLE LINKED LIST

v Implementation of stacks and queues.

v Implementation of graphs: Adjacency list representation of graphsis most popular which
useslinked list to store adjacent vertices.

v Dynamic memory allocation: We use linked list of free blocks.

v Maintaining directory of names. Performing arithmetic operations on long integers

v Manipulation of polynomials by storing constants in the node of linked list. Representing

Sparsematrices

Advantagesof Single Linked ligt:

e |Insertions and Deletions can be done easily.

e |t does not need movement of elements for insertion and deletion.

® Space is not wasted as we can get space according to our requirements.

e ltssizeisnot fixed. It can be extended or reduced according to requirements.

e Elements may or may not be stored in consecutive memory available, even then we can storethe
datain computer.

o |t isless expensive.

Disadvantages of SingleLinked list:
e |t requires more space as pointers are a so stored with information.
e Different amount of time is required to access each element.

o |f we have to go to a particular element then we have to go through all those elements thatcome
before that element.

e We cannot traverseit from last & only from the beginning.
e It isnot easy to sort the elements stored in the linear linked list.

25 DOUBLY LINKEDLIST
A doubly linked list or a two-way linked list is a more complex type of linked list which contains
apointer to the next as well as the previous node in the sequence.

Therefore, it consists of three parts—data, a pointer to the next node, and a pointer to the previous
node.

START

o e T el T Crma (T maet O

A doubly linked list provides the ease to manipulate the elements of the list as it maintains pointers to
nodes in both the directions (forward and backward).

The main advantage of using a doubly linked list is that it makes searching twice as
efficient.Let us view how adoubly linked list is maintained in the memory.

START
DATA PREV NEMNT

e H —1 3
2
3 E 1 &
A
5
Lo} L 3 Fa
7 & =
B8
o o 7 —1

Inserting a New Nodein aDoubly Linked List:
In this section, we will discuss how a new node is added into an aready existing doubly linked list.
Wewill take four cases and then see how insertion is done in each case.

Case 1: The new node isinserted at the beginning.Case
2: The new nodeisinserted at the end.

Case 3: The new nodeisinserted after a given node.
Case 4: The new node isinserted before a given node.

Case 1: Inserting a Node at the Beginning of a Doubly Linked List

- k- . .
- L

¥ |1 g 7 3 4 il B T

& 4 a4 a4
e = b =

Mlocate memory for the new node and Initialize 1ts DATA part to 9 and PREV field to HIAL.

A&dd the new node before the START node. Mow the new node becomes the first node of
the list.

x|o| 24 || B |7 2 [O . [= S o O 1

START

Step 1: IF AVAIL - MWULL

Write OVERFLOW

Go to Step 9

[EMD OF IF]

Step 2: SET NEW_NODE - AVAIL
Step 3: SET AVAIL = AVAIL —> NEXT
Step 4: SET HNEW_MODE —= DATA = VAL
Step 5: SET MEW_MODE —= PREV = MNULL

Step 6: SET MEW NODE —= MEXT = START
Step 7: SET START —= PREV = NEW_NODE
Step B: SET START = MEW_MODE

Step 9@ EBXIT

Case 2: Inserting a Node at the end of a Doubly Linked List

» —
X[: 7 : SR ==l 2| x

START
Allocate memory for the new node and initialize its DATA part to 9 and its
MEXT field +ao MULL.

9 | X
Take & pointer variable PTR and make it point to the tirst node of the list.

x |1 s 7 s 3 :I 4 - 3| W
STARTPTR
Move PTR £o that it points to the last node of the list, Add the naw node after the

node pointed by PTR.
- 1 S M e L O " |2 2 £ i

START FTH

il
e

L

Step 1: IF AVAIL = NULL
Write OVERFLOW
Go to Step 11
[END OF IF]

Step 20 5ET NEW_NODE = AVAIL

StEp 3: SET AVAIL = AVATIL —= NEXKT

Step 4: SET MEW _MNODE —=DATA = WAL

Step G5: SET MEW_MNODE —= MNEXT = HNLLL

Step G 5ET PTR = START

Step 7: Repeat Step 8 while PTR — HEXT != NULL
Step B: SET PTE = PTR —=MNEXT

[END OF LOOP]
Step 9: SET PTR —> NEXT = NEW_NODE
Step 10: SET NEW_NDODE —= PREV = PTR
Step 11; EXIT

Case 3: Inserting a Node After a Given Nodein a Doubly Linked List

. al e e =
ixlq_?_i_a_._n_‘__zx

START
Allocate memory for the new node and initialize its DATA part to 9.

9

Take a pointer variable PTR and make it point to the first node of the list.
2K

e e - -
-

X1 - 7 ol 3 T 4
START,PTR

il
-

Move PTR further until the data part of PTR = value after which the
node has to be inserted.

x|z [FF |z

e 2 | x

- 4

|
]
START PTR

Insert the new node between PTR and the node succeeding it.

¥ | v| [FE |7 =2 || 8 4 T AE
START eTe A H

9
-1 W = A o N s O - W~ A O 4 I - A

START

Step 1: IF AWATL = MNULL
Write OVERFLOW
Go to Step 12
[END OF IF]

Step 2: SET NEW _MNODE = AVAIL

Step 2: S5ET AVAIL = AVATL —=MEXT

Step 4: SET NEW NODE —= DATA = WAL

Step 5: S5ET PTR = S5TART

Step &: Repeat Step 7 while PTR —=DATA = KNUM
5tep 7 SET PTR = PTR —=NEXT

[END OF LOOF]
Step 8: SET MEW_NODE —= MEXT = PTR —= NEXT
Step 9: SET NEW_NODE — PREV = PTH
Step 10: SET PTR —=NEXT = NEW_NODE

Step 11: SET PTR —= MEXT —= PREV = NEW_NODE
Step 12: EXIT

Case 4: Inserting a Node Before a Given Node in a Doubly Linked List

X |1 = 7 T 3| = | ¥ = 2 | X
START
Allocate memory for the new node and initialize its DATA part to 9.
g

Take & pointer variable PTR and make it point to the first node of the list.
% [1 . 7 s 3 s 4 — 2 | X
START, PTR

Move PTR further so that it now points to the node whose data is equal
to the value before which the node has to be inserted.

> - e >
X1 ‘ 7 < 3 - 4 "
START

2| X

Add the new node in between the node pointed by PTR and the node preceding it.
% |1 — Iz [2] 2 |al & |a|x
START v y4 e

nl
RO
'1r
s

1
I
Jll

&

.

START

Step

Step
Step
Step
step
S5tep
Step

Step
step
S5tep
Step
5tep

e
wn

sl Th W B kad B

8:
o:

IF AVATIL = NULL
Write OVERFLOW

Go to Step 12

[END OF IF]

: SET NEW_NODE = AVAIL

: SET AVAIL = AVAIL —= MEXT

: S5ET NEW_NODE —DATA = VAL

: SET PTR = START

i Repeat S5tep 7 while PTR — DATA != NUM
SET PTR = PTR —= NEXT

[END OF LOOP]

SET NEW _MODE —=MNEXT = PIR

SET MEW_MNODE —=PREY = PTR —= PREV

10: SET PTR —=PREV = MNEW_NODE
11: SET PTR —= PREYW —= MEXT = NEW NODE
12: EXIT

Deleting a Nodefrom a Doubly Linked List
In this section, we will see how a node is deleted from an aready existing doubly linked list. We will
take four cases and then see how deletion is done in each case.

Case 1: Thefirst nodeis
deleted.Case 2: Thelast node

is deleted.

Case 3: The node after a given node is deleted. Case
4: The node before agiven node is deleted.

Case 1: Deleting the First Nodefrom a Doubly Linked List

¥
e
w
LY |
L
o
k
u

START

Free the pemory cccupled by the first nede of the List and make the second node of the
1ist as the START node.

x|2] &2 |s| & |7

START

¥

-
i

-l
=it

-

Step 1: IF START = MILL
Write UNDERFLOW

Go to 5tep ©
[END OF IF]
Step 2: SET PTR = START
Step 3: S5ET START = START —= NEXT

5tep 4: SET 5TART —> PREV = NULL
Step 5: FREE PTR
Step 6: EXIT

Case 2: Deleting the Last Nodefrom a Doubly Linked List

A

A
A

A

START

Take a polnter variable PTR that points to the first node of the list.

¢lv] 27 3] B lal B2 4] B |E] B e
START,PTR
Mave PTR so that it mow points to the last aode of the list,

L. k- - L.
Xl11 " i 3 i 5 F _ 2

-0 i -
- - -T-

START FTR

¥

.

Free the space occupled by the node polnted by PTR and store MULL in NEXT fleld of
its preceding node.

- L. .
Ea B

. 3 - 3 - 7

¥

X (1
START

F

Step 1: IF START = NULL
Write UNDERFLOW
Go to Step 7
[END OF IF]
Step 2: SET PTR = START
Step 3: Repeat Step 4 while PTR-> NEXT != NULL

Step 4: SET PTR = PTR =>MNEXT
[ENMD OF LOOP]

Step 5: SET PTR—>PREV — NEXT = NULL

S5tep 6: FREE FIR

Step 7: EXIT

Case 3: Ddeting the Node After a Given Nodein a Doubly Linked List

T

¥

T

¥

&
-
.

START

Take & pointer varlable PTR and make it polnt to the first node of the list.

AEI =Bl = = E = | T |e) X

START,PTR

Move PTR further so that its date part is egual to the value after which the node has
to be inserted.

.

x| EEE |2 BN e A (2] &R (8| EEE |
START TR

pelete the node succeeding PTR,

%% 2N |3 w1 &l 7 Alsl 22F |9l x
START FTR

> —»] - —
X1 < 3 " 4 < g =, 2| X

START

Step 1: IF START = NULL
Write UNDERFLOW
Go to Step 9
[END OF IF]
: 5ET PTR = S5TART
: Repeat Step 4 while PTR — DATA I= NUM
S5ET PTR = PTR-> MEXT
[END OF LOOP)
Step 5@ S5ET TEMP = PTR —->MNEKT
Step 63 SET PTR —->MNEXT = TEMP —= NEXT
Step 7: SET TEMF —=MNEXT —= PREV = FTR
Step E: FREE TEMP
Step 9: EXIT

Fud

Step
Step
Stap

Boow

Case 4: Deleting the Node Before a Given Nodein a Doubly Linked List

1r
I

X1 - s

a| [|7

e |»

r
-

START

Toke & polnter variable PTR that points to the first node of the list.

x[1] 2 3] &2 Ja =1 |7 < |8| & |0

START,PTR

Move PTR further till its data part iz equal to the value before which the node has
to be delated.

ola| L= :) (O - 40 N e N -) N -7 S T W - O € -
START FTH
Delete the node preceding PTR,

X |4 |4 3 42| B2 |7 = |»| &EEE |8
START PTR

- 30 O O N 2 O = I O === A 4 I === N L

START

Step 1: IF START = NULL
Write UNDERFLOW
Go to Step 9
[END OF IF]
Step 2: 3ET FPTR = START
Step 3: Repeat Step 4 while PTR —>DATA |= NUM
StTep 4: SET PTR = PTR —=MNEXT
[END OF LODP]
Step 5: SET TEMP = PTR —= PREV
Step 6: SET TEMP —> PREV —= NEXT - PTR
S5tep - F: 5ET FTR—=PREY = TEMP —= PREV
Step 8: FREE TEMP
StEp g: EXIT

26 CIRCULARLINKEDLIST
Inacircular linked ligt, the last node contains a pointer to the first node of the list. We can have a
circular singly linked list aswell as a circular doubly linked list.

While traversing a circular linked list, we can begin at any node and traverse the list in any
direction,forward or backward, until we reach the sasme node where we started. Thus, a circular

linked list hasno beginning and no ending.

Note that there are no NULL valuesin the NEXT part of any of the nodes of list.

START

|--|1 —|—:-2
n

¥

3| e] s —|“'f' 2]

Operation:
Insertinga New Nodein a Circular Linked List

In this section, we will see how a new node is added into an aready existing linked list. We will
taketwo cases and then see how insertion is done in each case.

Case 1: The new node isinserted at the beginning of the circular linked list.Case 2:
The new node isinserted at the end of the circular linked list.

Case 1: Inserting a Node at the Beginning of a Circular Linked List

[w7 [3] s] 2] e[=]]

START 4
Allocate memory forr the new node and initialize its DATA part to 9.

Take a pointer variable PTR that points to the START node of the list.

1 » 7 » 3 w4 » 7 » 6 » 5
START, 4 PTR

Move PTR so that it now points to the last node of the list.

1| —» 7 > 3 » 4 » 2 » & » 5

sTarT 4 PTR

Add the new node in between PTR and START.

9 " 1 > 7 = 3 » 4 = 2 > 5 » 5
A START PTH
9 » 1 7| 3| 4| 2| 6 > 5
START A

Step 1: IF AVAIL = NULL
Write OVERFLOW

Go to Step 11

[END OF IF]
Step 2: SET NEW_NODE = AVAIL
Step 3: SET AVAIL = AVAIL —>NEXT
Step 4: SET MEW _MNODE —» DATA = VAL
Step 5: SET PTR = START
Step 6: Repeat Step 7 while PTR —>NEXT |= START
Step 7: PTR = PTR — NEXT

[ENO DF LDOP]
Step 8: SET NEW_MODE —> NEXT = START
Step 91 SET PTR->MNEXT = NEW_NODE
5tep 10: 5ET S5TART = NEW_NODDE
Step 11: EXIT

Case 2: Inserting a Node at the End of a Circular Linked List

1 = 7 - 3 = 4 o e — = & = 5
START #
Allocate memory for the new node and initialize its DATA part to 9.
E

Take a pointer wvariable PTR which will initially point to START.

o = 7 = 3 = . S = G — ™ 5

START, & PTR

Move PTR =0 that it now points to the last node of the list.

1| —f 7 [— 3 — 4 — 2 e 5
START 4 FTR

Add the new node after the node pointed by PTH.
al = S > 3 | 2| —m B
START A PTR

Y
W
Y
0

Step 1: IF AVAIL = NULL
Write OVERFLOW
Go to Step 10
[END OF IF]
Step 2: SET NEW_NODE = AVAIL
Step 3: SET AVAIL = AVAIL —> NEXT
Step 4: SET NEW_NODE —> DATA = VAL
Step 5: SET NEW _NODE —= NEXT = START
5tep b6: SET FTR = 5TART
Step 7: Repeat Step 8 while PTR —=NEXT != START
Step 8: SET PTR = PTR —=MNEXT
[END OF LOOP]
Step 9: SET PTR—»NEXT = NEW_NODE
Step 10: EXIT

Deleting a Nodefrom a Circular Linked List

In this section, we will discuss how anodeis deleted from an already existing circular linked list.
We will take two cases and then see how deletion is done in each case. Rest of the cases of deletion
are same as that given for singly linked lists.

Case 1: Thefirst nodeis

deleted.Case 2: Thelast node
is deleted.

Case 1: Deleting the First Nodefrom a Circular Linked List

1 —f=- 7
START 4
Take a variable PTR and make it point to the START node of the list.

¥
Iad
|
)
¥
P
L
o
¥
1

1 > 7 > 3 > 4 - 2 > B > 5
START,A PTR

Move PTR further so that it now points to the last node of the 1list.

1 e = 3 —i—)" & —i—b 2 = G > 5
START A PTR
The NEXT part of PTR is made to point to the second node of the list

and the memory of the first node is freed. The second node becomes
the first node of the list.

7| el 3| 1l a ——»| 2
START A PTR

¥
=13
L

1

Step 1: IF START = MULL
Write UNDERFLOW
bo to Step 8
[END OF IF]
Step 2: SET PTR = START
Step 3: Repeat Step 4 while PTR->NEXT |= START
Step 4: SET PTR = PTR — NEXT
[END OF LOOP)
Step 5: SET PTR->NEXT = START -»NEXT
Step G: FREE START
Step 7: SET START = PTR—= NEXT
Step 8: EXIT

Case 2: Deletingthe Last Nodefrom a Circular Linked List

Step 1: TF START = MILL
Write UNDERFLOM
Go to Sten 8

[END OF IF)
Step 2: SET PTR = START
Gtep 3: Repeat Steps 4 and 5 while PTR—-KEXT != START
Stey 4: SET PREPTR = PRR
Step 5 SET PTR = PTR->NEXT
[END OF LOOP)
Step & SET PREPTR=>NEXT = START
Gten 7: FREE PTR
Step 8: EXIT

W
Tl
v
tukd
w
e
L4
Ful
L
eh
L3
L

1

START &
Take two pointers FREPTR and PTR which will initially point to START.

1| 7 3| 4| 2| 6| s

START +

PREPTR
PTR
Move PTR so that it podints to the last node of the list. PREPTR will
always point to the node preceding PTH.

¥

1| 7| 3| 8| 2 > 6 5
START A PREPTR PTR

Make the PREPTR's next part store START node’s address and free the
space allocated for PTR. Mow PREPTR: 1s the last node of the list.

1 > 7 > 3 > 4 > 2 = 6
START A PREPTR

M.Sc. (Computer Science)
SEMESTER-2
COURSE: SOFTWARE ENGINEERING

UNIT 3: QUEUE

3.1. INTRODUCTION

3.2ARRAY REPRESENTATION OF QUEUES
3.3. LINKED REPRESENTATION OF QUEUES
3.4. APPLICATIONS OF QUEUE

3.5. TYPES OF QUEUE

3.1 INTRODUCTION

Let us explain the concept of queues using the analogies given below.

e People moving on an escalator. The people who got on the escalator first will be the first one to step
out of it.

e People waiting for abus. The first person standing inthe line will be the first one to get into the bus.

¢ People standing outside the ticketing window of a cinema hall. The first person in the line will get the
ticket first and thus will be the first oneto move out of it.

e |_uggage kept on conveyor belts. The bag which was placed first will be the first to come out at the
other end.

e Carslined at atoll bridge. The first car to reach the bridge will be the first to leave.

In all these examples, we see that the dement at the first position is served first. Same is the case with
gueue data structure. A queue is a FIFO (First-1n, First-Out) data structure in which the element that
isinserted first is the first one to be taken out. The elements in a queue are added at one end called the
REAR and removed from the other end called the FRONT. Queues can be implemented by using either
arrays or linked lists. In this section, we will see how queues are implemented using each of these data
structures.

3.2 ARRAY REPRESENTATION OF QUEUES
Queues can be easily represented using linear arrays. As stated earlier, every queue has front and rear

variablesthat point to the position from where deletions and insertions can be done, respectively.
The array representation of aqueue is shown in Fig. 3.1.

[T e T 7vTw[18T 36] [1 [|
P FR | %

o 3 i 3 B T o g
Figure 3.1 Qusue
EAE SR RErAE e [[1]
a 1 2 5 4 5 B 4 g g

Figure 2.2 Queus atter insedion of a new slamant

I 5 2 0 .- RT3 2 3T] [

a 1 2 3 ¥ TSR PRCRONT R BT ETUR)

Operations on Queues

In Fig. 3.1, FRONT = 0 and REAR = 5. Suppose we want to add another element with value 45, then
REAR would be incremented by 1 and the value would be stored at the position pointed by REAR.

The queue after addition would be as shown in Fig. 3.2. Here, FRONT = 0 and REAR = 6. Every time a
new element has to be added, we repeat the same procedure.

If we want to delete an element from the queue, then the value of FRONT will be incremented. Deletions
are done from only this end of the queue. The queue after deletion will be as shown in Fig. 3.3.
Here, FRONT =1 and REAR = 6.

However, before inserting an element in a queue, we must check for overflow conditions. An overflow
will occur when we try to insert an element into a queue that is already full. When REAR = MAX -1,
where MAX isthe size of the queue, we have an overflow condition. Note that we have written MAX —
1 because the index starts from 0. Similarly, before deleting an element from a queue, we must check for

underflow conditions. An underflow condition occurs when we try to delete an element from a queue
that isaready empty. If FRONT = -1 and REAR = -1, it meansthere is no element in the queue.

Step 1: IF REAR = MAN=]
T S Step 1: IF FRONT = -1 OR FRONT » REAR
(6N OF TE] | Write UNDERFLOW
Step 2: IF FRONT = =1 and REAR = =1 ELSE
FISESET FRONT = REAR = O SET VAL = QUELE[FRONT]
" SET REAR = REAR + 1 SET FRONT = FRONT + 1
[END OF IF] [EKD OF IF]
Step 3: SET QUEUE[REAR] = MUM Stap 2: EXIT
Step &4 EXNIT

Algorithmto insert an element in a queue Algorithmto delete an element from a queue

NOTE: The process of inserting an element in the queue is called enqueue, and the process of deleting an
element from the queue is called dequeue.

3.3 LINKED REPRESENTATION OF QUEUES

We have seen how a queue is created using an array. Although this technique of creating a queue is easy,
its drawback is that the array must be declared to have some fixed size. If we allocate space for 50
elementsin the queue and it hardly uses 20-25 locations, then half of the space will be wasted.

And in case we alocate less memory locations for a queue that might end up growing large and large,
then a lot of re-allocations will have to be done, thereby creating a lot of overhead and consuming a lot
of time.

In case the queue is a very smal one or its maximum size is known in advance, then the array
implementation of the queue gives an efficient implementation. But if the array size cannot be
determined in advance, the other aternative, i.e, the linked representation is used. The storage

requirement of linked representation of a queue with n elementsis O(n) and the typical time requirement
for operationsis O(1).

In alinked queue, every element has two parts, one that stores the data and another that stores the address

of the next element. The START pointer of the linked list is used as FRONT. Here, we will aso use
another pointer called REAR, which will store the address of the last element in the queue.

All insertions will be done at the rear end and al the deletions will be done at the front end. If FRONT =
REAR = NULL, then it indicatesthat the queue is empty. The linked representation of a queue is shown
inFig. 3.4.

e e HE e R HE e e

Front Fimm Step 11 Allocate memery for the new node and nome
1t as PTH

Step 22 501 FIR —>Dala = WAL

Step 3: IF FROWT = NIAL

Figura 2.4 Linkesd queds

[l gmt 7] g»fa] Jsje | gef2] —ja | = 5] X] EET FHONT = REAR = BIR
. Fisear SET FROMT —= NEET = REAR —=KEKT = WULL
Figure 3.5 Linked queus CLSE
SET AEAR —=MNEXT = TR
SET HEAEH = FIR
B e e I L S SET MEMH —=NEXT = MULL
Frons Hear [CMD oF IF]

Step 4: END

Algorithmto insert an element in alinked queue
Insert Operation

The insert operation is used to insert an element into a queue. The new element is added as the last
element of the queue. Consider the linked queue shown in Fig. 3.5.

To insert an element with value 9, we first check if FRONT=NULL. If the condition holds, then the queue
is empty. So, we alocate memory for a new node, store the value in its data part and NULL in its next
part. The new node will then be called both FRONT and rear. However, if FRONT != NULL, then we
will insert the new node at the rear end of the linked queue and name this new node as rear. Thus, the
updated queue becomes as shown in Fig. 3.6.

The algorithm shows that inserting an element in a linked queue. In Step 1, the memory is allocated for
the new node. In Step 2, the DATA part of the new node is initialized with the value to be stored in the
node. In Step 3, we check if the new node is the first node of the linked queue. Thisis done by checking
if FRONT = NULL. If thisis the case, then the new node is tagged as FRONT as well as REAR. Also
NULL is stored in the NEXT part of the node (which is aso the FRONT and the REAR node).
However, if the new node is not the first node in the list, then it is added at the REAR end of the linked
gueue (or the last node of the queue).

Delete Operation

The delete operation is used to delete the element that is first inserted in a queue, i.e., the element whose
addressis stored in FRONT. However, before deleting the value, we must first check if FRONT=NULL
because if this is the case, then the queue is empty and no more deletions can be done. If an attempt is
made todel ete a value from a queue that is already empty, an underflow message is printed. Consider the
gueue shownin Fig. 3.7.

M EE T T N | E

|?|-H]|-H ELEELHEL FIE L OE L OE Step 1: IF FRONT = NULL

=roni :;,EH’ e " —~ "

i 5 Write "Underflow

Fiur 1.7 Liskad queve Go to Step S
[EMD OF IF]

: : R Step 2: SET PTR = FRONT
EG"LLJ_-""L*l_‘I*L&l_‘l":_"*J_'"LE'J_’l Step 3: SET FRONT = FRONT — NEXT
Frond Fear Step 4: FREE PTR

Step 5: END

3.4 APPLICATIONSOF QUEUES

e Queues are widely used aswaiting lists for asingle shared resource like printer, disk, CPU.

e Queues are used to transfer data asynchronoudy (data not necessarily received at same rate as sent)
between two processes (10 buffers), e.g., pipes, file 10, sockets.

o Queues are used as buffers on MP3 players and portable CD players, iPod playlist.

e Queues are used in Playlist for jukebox to add songs to the end, play fromthe front of thelist.

o Queues are used in operating system for handling interrupts. When programming a real -time system that
can be interrupted, for example, by a mouse click, it is necessary to process the interrupts immediately,
before proceeding with the current job. If the interrupts have to be handled in the order of arrival, then a
FIFO queue isthe appropriate data structure.

3.5 TYPESOF QUEUES

A queue data structure can be classified into the following types:
1. Circular Queue

2. Deque

3. Priority Queue

4. Multiple Queue

3.5.1 Circular Queues

In linear queues, we have discussed so far that insertions can be done only at one end called the REAR
and deletions are always done from the other end called the FRONT. Look at the queue shown in Fig.
3.9.

L 54| 8 [7] 18] 94 [38|45 | 21] 00| 72|
o 1 2 3 4 5 & T 8® 9

Here, FRONT = 0 and REAR = 9.

Now, if you want to insert another value, it will not be possible because the queue is completely full.
There is no empty space where the value can be inserted. Consider a scenario in which two successive
deletions are made. The queue will then be given as shown in Fig. 3.10.

| | | 7 [98] %4 | 36 | a5 | 21 |
5 T

9 | 72 |
b & ok W W g

8

Here, front =2 and REAR = 9.

Suppose we want to insert a new element in the queue shown in Fig. 3.10. Even though there is space
available, the overflow condition still exists because the condition rear = MAX — 1 still holds true. This
isamajor drawback of alinear queue.

To resolve this problem, we have two solutions. Firgt, shift the elementsto the left so that the vacant space
canbe occupied and utilized efficiently. But this can be very time-consuming, especially when the queue
isquite large.

The second option isto use a circular queue. In the circular queue, the first index comes right after the last
index. Conceptually, you can think of acircular queue as shownin Fig. 3.11.

s ;26_ e
s d="‘h\.\":--- E --\."'f x."‘\.
-I.l D[Ei.a -_\.!:11] ...
i b=
e & R - -
4] | Qf3]

The circular queue will be full only when front = 0 and rear = Max — 1. A circular queue is implemented
in thesame manner as a linear queue is implemented. The only difference will be in the code that
performsinsertion and deletion operations.

For insertion, we now have to check for the following three conditions:

e |f front = 0 and rear = MAX — 1, then the circular queue isfull. Look at the queue given in Fig. 3.12
which illustrates this point.

o If rear '= MAX — 1, then rear will be incremented and the value will be inserted asillustrated in Fig.
3.13.

e |f front I= 0 and rear = MAX — 1, then it means that the queue is not full. So, set rear = 0 and insert the
new element there, as shown in Fig. 3.14.

(B0 [#8] 7 [i8] & | 96] &5 | 21 | @ [72]
FRONT = OL 2 3 4 5 2] 7

Figure 3.12 Full quaus

Lon] #p] 7 [W]w]|w]as|a]mw] |
PRONT =01 : 3 4 5 © 7 Memc-3%

Incremend rear o thet & ports fo locaBon B and ineerd the wmbus hers

Figure 313 Ousue with vaoant looations

8 EEAR = &

| [7 [o8 | 14 [o8 [as | 2 |80 | 81 |

Jrl} 1 FRONT = 2 3 = 5) 7
el REAR = G and Ingert e valie hara

B BEAR = 3

Step 1: 1IF FRONT =@ and Rear = MAX - 1
Write "OVERFLOW
Goto: Staep 4
[End QOF LF]
Step 2: IF FRONT = -1 and REAR = -1
SET FRONT = AEAR = @
ELSE IF REAR = MAY - 1 and FRONT =0
SET REAH = O
ELSE
SET RELH = KEAR + 1
[EWD OF IF]
Step 3: SET QUELE[REAR] = waL
Step 47 EXIT

Let uslook at the algorithm to insert an element in a circular queue. In Step 1, we check for the overflow
condition. In Step 2, we make two checks. First to see if the queue is empty, and second to see if the
REAR end has aready reached the maximum capacity while there are certain free locations before the
FRONT end. In Step 3, the value is stored in the queue at the location pointed by REAR.

Let us now discuss how deletions are performed in this case. To delete an element, again we check for

three conditions.

eLook at Fig. 3.15. If front = —1, then there are no elements in the queue. So, an underflow condition

will be reported.

e |f the queue is not empty and front = rear, then after deleting the element at the front the queue
becomes empty and so front and rear are set to —1. Thisisillustrated in Fig. 3.16.

o If the queue isnot empty and front = MAX-1, then after deleting the element at the front, front is set to

0. ThisisshowninFig. 3.17.

o 1 F 3
FRONT = EEAR = =1

Figure 3,15 Emply quedie

fe—ul I [| I [1 [#1]

&) 1 4 L 4 5 L 7 B FRONT =
REAR = 3

Delabe this slemant ond =ed REAR = FRONT = -

Figure 318 Ceeus with a single eleman

(72 || e |jw|arja]|] | | [|8]

iJ 1 £ 1 4 Fear = 5 &) H FROHT = 3

Crlmie s slernart ond esi FAOKT = @

Step 1: IF FROWNT = -1
Wirite “LNDERF LOW ™
GoTo Step 4
[ENDG oF IF]
Step 21 SET WAL = QUEUE[FROMT]
Step 3: IF FROMT = REAR
SET FRONT = REAR = -1

ELSE
IF FRONT = MAX -1
SET FRONT = O
ELSE
SET FRONT = FRONT + 1
[END af IF]
[END OF IF]

Step 4; EXIT

Let us look at the algorithm to delete an element from a circular queue. In Step 1, we check for the
underflow condition. In Step 2, the value of the queue at the location pointed by FRONT is stored in
VAL. In Step 3, we make two checks. First to see if the queue has become empty after deletion and
second to see if FRONT has reached the maximum capacity of the queue. The value of FRONT is then
updated based on the outcome of these checks.

3.5.2 Deques

A deque (pronounced as ‘deck’ or ‘dequeue’) is a list in which the elements can be inserted or deleted at
eitherend. It is also known as a head-tail linked list because elements can be added to or removed from
either the front (head) or the back (tail) end.

However, no element can be added and deleted from the middle. In the computer’s memory, a deque is
implemented using either acircular array or acircular doubly linked list.

In a deque, two pointers are maintained, LEFT and RIGHT, which point to either end of the deque. The
elementsin a deque extend from the LEFT end to the RIGHT end and sinceit is circular, Dequeue[N—1]
isfollowed by Dequeue]0]. Consider the deques shown in Fig. 3.18.

I | | [20 | 5n [45 | s4 | 83 | | |

0 1 1 LEFT = 3 & : & ALGHT = 78 §
L42 [sa] | | | [[ej2r]w]
¢ AIGHT = 12 3 2 5 & LEFT = 7 & 5

There are two variants of a double-ended queue. They include

e Input restricted deque In this dequeue, insertions can be done only at one of the ends, while deletions
can be done from both ends.

e Output restricted deque In this dequeue, deletions can be done only at one of the ends, while insertions
can be done on both ends.

3.5.3 Priority Queues

A priority queue is a data structure in which each element is assigned a priority. The priority of the
element will be used to determine the order in which the elements will be processed. The general rules
of processing the elements of a priority queue are

e An element with higher priority is processed before an element with alower priority.

e Two elements with the same priority are processed on afirst-come-first-served (FCFS) basis.

A priority gueue can be thought of as a modified queue in which when an element has to be removed from
the queue, the one with the highest-priority is retrieved first. The priority of the element can be set based
on various factors. Priority queues are widely used in operating systems to execute the highest priority
process first. The priority of the process may be set based on the CPU time it requires to get executed
completely.

Implementation of a Priority Queue

There are two ways to implement a priority queue. We can either use a sorted list to store the elements so
that when an element has to be taken out, the queue will not have to be searched for the element with the
highest priority or we can use an unsorted list so that insertions are aways done at the end of the list.

Every time when an element has to be removed from the list, the element with the highest priority will be
searched and removed. While a sorted list takes O(n) time to insert an element in the lit, it takes only
O(2) time to delete an element. On the contrary, an unsorted list will take O(1) time to insert an el ement
and O(n) time to delete an element fromthe list.

Practically, both these techniques are inefficient and usually a blend of these two approaches is adopted
that takes roughly O(log n) time or less.

3.5.4 Multiple Queues

When we implement a queue using an array, the size of the array must be known in advance. If the queue
is allocated less space, then frequent overflow conditions will be encountered.

To deal with this problem, the code will have to be modified to reallocate more space for the array. In
case we alocate alarge amount of space for the queue, it will result in sheer wastage of the memory.

Thus, there lies atradeoff between the frequency of overflows and the space alocated. So a better solution
to deal with this problem is to have multiple queues or to have more than one queue in the same array of
sufficient size. Figure 3.19 illustrates this concept.

th] 1 2 £ 4 -4 n-3 n-2 n-1
el b] e e]]]]
GUIELUE A QUEUER

Figure 2,19 Multiple queues

B3] eld] o{1] e[1]bf2] £[2] B3] a3 b{4] afd]
—— — — B =]

In the figure, an array Queue[n] is used to represent two queues, Queue A and Queue B. Thevalueof nis
suchthat the combined size of both the queues will never exceed n. While operating on these queues, it is
importantto note one thing—queue

A will grow from left to right, whereas queue B will grow from right to left at the same time. Extending
the concept to multiple queues, a queue can also be used to represent n number of queues in the same
array. That is, if we have a QUEUE[N], then each queue | will be alocated an equal amount of space
bounded by indices b[i] and €]i]. Thisis shown in Fig. 3.20.

Applications of Queue
Queues are an important data structure that follows the First-In-First-Out (FIFO) principle. They are used
in various applications, including:

Operating Systems: Queues are used in operating systems to manage the scheduling of processes and
threads. Each process or thread is added to a queue, and the operating system determines which process
or thread should be executed next based on scheduling algorithms.

Networking: Queues are used in networking to manage the flow of data packets between different devices
on a network. For example, routers use queues to store packets that are waiting to be transmitted to their
destination.

Print Spooling: Print jobs that are sent to a printer are stored in a queue until the printer is ready to print
them. This ensures that the printer can handle multiple print jobs without getting overwhel med.

Traffic Management: Queues are used in traffic management systems to manage the flow of vehicles at
intersections, toll booths, and other traffic control points. Vehicles are queued up in lanes and allowed to
proceed through the control point in afirst-come, first-served order.

Call Center Management: Queues are used in call centers to manage the flow of incoming calls. Calls are
placed in a queue and assigned to available agents based on various routing algorithms.

Event-driven Programming: Queues are used in event-driven programming to manage the flow of events.
Events are added to a queue, and the program processes them in afirst-come, first-served order.

Job Scheduling: Queues are used in job scheduling to manage the order in which tasks are executed. Jobs
are added to aqueue and processed in the order in which they were added.

Breadth-First Search: Queues are used in graph traversal algorithms, such as Breadth-First Search, to keep
track of nodes that need to be explored. Nodes are added to a queue and explored in the order in which
they were added.

Overall, queues are a fundamental data structure used in many applications that require the efficient
management of a collection of data elements.

Multiple-choice Questions

1. Alineinagrocery store represents a
(a) Stack (b) Queue

(c) Linked List (d) Array

2. Inaqueue, insertion isdone at

(a) Rear (b) Front

(c) Back (d) Top

3. Thefunction that deletes values
fromaqueueiscalled

(a) enqueue (b) dequeue

(c) pop (d) peek

4. Typica time requirement for

operations ongqueues is

(@ O(1) (b) O(n)

(c) O(log n) (d) O(n2)

5. Thecircular queue will be full only when
(8 FRONT =MAX -1 and REAR = Max -1
(b) FRONT =0and REAR=Max -1

(c) FRONT =MAX —-1and REAR=0

(d) FRONT=0and REAR=0

Fill in theBlanks

1

2.

7

In

computercentre.

senioritysyst

New nodes are added at of the queue.
alows insertion of elements at either ends but not inthe middle.

Thetypical time requirement for operationsin alinked queueis

, insertions can be done only at one end, while del etions can be done from both the ends.

Degueueisimplemented using

are appropriate data structures to process batch computer programs submitted to the

are appropriate data structures to process a list of employees having a contract for a
em for hiring and firing.

M.Sc. (Computer Science)
SEMESTER-2
COURSE: DATA STRUCTURE AND ALGORITHMS

UNIT 4: STACKS

4.1. INTRODUCTION

4.2 ARRAY REPRESENTATION OF STACKS

4.3. OPERATIONS ON STACK

4.4. LINKED REPRESENTATION OF STACKS

4.5. APPLICATIONS OF STACKS

4.6. REVERSING LIST

4.7. EVALUATION OF ARITHMETIC EXPRESSIONS

4.1 INTRODUCTION

Stack is an important data structure which stores its elements in an ordered manner. We will explain the
concept of stacks using an analogy. Y ou must have seen a pile of plates where one plate is placed on top
of another as shown in Fig. 3.21.

Now, when you want to remove a plate, you remove the topmost plate first. Hence, you can add and
removean element (i.e., aplate) only at/from one position which is the topmost position.

™1

Il
Arothier plats A1 = The topmos!
wilbe — ~ e plate wil
sddadontop e rEHTIOY B0
of this :-'"_ L y first
plate ~—{—
AR

A stack is alinear data structure which uses the same principle, i.e., the elementsin a stack are added and
removed only from one end, which is called the TOP.

Hence, a stack is called a LIFO (Last-In-First-Out) data structure, as the element that was inserted last is
the first one to be taken out.

4.2 ARRAY REPRESENTATION OF STACKS

In the computer’s memory, stacks can be represented as a linear array. Every stack has a variable called
TOP associated with it, which is used to store the address of the topmost element of the stack. It is this
position where the element will be added to or deleted from.

There is another variable called MAX, which is used to store the maximum number of € ements that the
stack can hold. If TOP = NULL, thenit indicatesthat the stack isempty and if TOP = MAX-1, then the
stack is full. (You must be wondering why we have written MAX-1. It is because array indices start
from0.) Look at Fig. 3.22.

4
3

2 C Top
1 B

0 A

Stack S

4.3 OPERATIONSON A STACK
A stack supportsthree basic operations: push, pop, and peek.

The push operation adds an element to the top of the stack and the pop operation removes the element
fromthe top of the stack. The peek operation returns the val ue of the topmost element of the stack.

Push Operation

YVVYYV

The push operation is used to insert an element into the stack.

The new element is added at the topmost position of the stack.
Toinsert an element with value 6, we first check if TOP=MAX-1.
If the condition is false, then we increment the value of TOP and
element at theposition given by stack[TOP].

store the new

Pop Operation

4 TOP=5 6 7 8 g9

Step

Step
Step
Step

Ty]

: IF TOP = MAX-1

PRINT “OVERFLOW"
Goto Step 4
[EMD ©F IF]

: 5ET TOP = TOP + 1
;OSET STACK[TOR] = WALLE
: END

> The pop operation is used to delete the topmost el ement from the stack.

> However, before deleting the value, we must first check if TOP=NULL because if that isthe
case, thenit means the stack is empty and no more deletions can be done.

> To delete the topmost element, we first check if TOP=NULL. If the condition is false,
then wedecrement the value pointed by TOP.

BEEEEREREE ==
il i Z i ToOP=4 5 i T i 8
Step 1: IF TOP = MULL
PFRINT "WMDER
Goto Step 4
[END OF IF]
Step 2: SET VAL = STACK]
Step 3: SET TOP = TOP -
|] | 2 | 3 o | | | | | Step 4: END
] i 2 Top=3 4 5 fi T]] <

F LW

TEaE]
1

Peek Operation

> Peek is an operation that returns the value of the topmost element of the stack without deleting
it fromthe stack.
> However, the Peek operation first checks if the stack isempty, i.e., if TOP = NULL,
then anappropriate message is printed, else the value is returned.
> Here, the Peek operation will return 5,asit isthe value of the topmost element of the stack.
| '.=II:IE: L: -I-'- 3 l :l:- HLILL
PRINT ~STACK S FEPTYS
[[[[| | sate Step 3
| B A e S . | | | | Stea 2 BETURN STACK{TDR]
o] 1 Kl
o 2 & Toe=4. %5 #% 7 & 8 [T
Example:
1 = i it g |- e
! HeSmid b L RSN % o pushCd pnia ! TR -]
5
4 4
2 3
3 £ z
1 1 1 1
5 3 3 2 1
e] af PO T o) L
]
3 3
2 2 2
1 1 1 1

44 LINKED REPRESENTATION OF STACKS

We have seen how a stack is created using an array. This technique of creating a stack is easy, but the
drawback isthat the array must be declared to have some fixed size. In case the stack is avery small one
or its maximum size is known in advance, then the array implementation of the stack gives an efficient
implementation. But if the array size cannot be determined in advance, then the other alternative, i.e.,
linked representation, is used.

The storage requirement of linked representation of the stack with n elementsis O(n), and the typical time
requirement for the operationsis O(1).

In alinked stack, every node has two parts—one that stores data and another that stores the address of the
nextnode. The START pointer of the linked list is used as TOP. All insertions and deletions are done at
the node pointed by TOP. If TOP = NULL, then it indicates that the stack is empty. The linked
representation of a stackis shown in below figure.

| | | | | | | | | | o |
I e B B 1 B e N B A B L B D
TCRP

Push Operation

The push operation is used to insert an element into the stack. The new element is added at the
topmostposition of the stack. Consider the linked stack shown in below figure.

LT A e Tz e [{5]
TP
To insert an element with value 9, we first check if TOP=NULL. If this is the case, then we dlocate
memory for a new node, store the value in its DATA part and NULL in its NEXT part. The new node
will then be called TOP. However, if TOPI=NULL, then we insert the new node at the beginning of the
linked stack and name this new node as TOP.

0 S I g A g T g B g 3 S o 1 s g N S
TOP

the agorithm to push an element into alinked stack. In Step 1, memory is allocated for the new node. In
Step2, the DATA part of the new node isinitialized with the value to be stored in the node. In Step 3,
we check ifthe new node is the first node of the linked list. is done by checking if TOP = NULL. In
case the |F statementevaluatesto true, then NULL is stored in the NEXT part of the node and the new
nodeis called TOP. However, if the new nodeis not the first node in thelist, then it is added before the
first node of theligt (that is, the TOP node) and termed as TOP.

Stup 1: allocata nemary for the new
mode and name . 1T as NEW NOQE
Stap 27 SET MEW_NODE —= DATA = WAL
Stap 3: IF TOP = WULI
SET MEW MODE —=HEXT = MULL
SET TOP = HEW_NODE
ELSE
SET NEW_MODE —=NEXT = TOP
SET TOP = NEW_NODE
[END OF IF]
Step 41 EMD

Pop Operation

The pop operation is used to delete the topmost element from a stack. However, before deleting the value,
we must first check if TOP=NULL, because if thisis the case, then it means that the stack is empty and
no more deletions can be done. If an attempt is made to delete a value from a stack that is already empty,
an UNDERFLOW message is printed. Consider the stack shown in below figure.

(8] ta] 7] 3] {4 2] e[pis]x]
TOP
In case TOP!I=NULL, then we will delete the node pointed by TOP, and make TOP point to the second
element of the linked stack. Thus, the updated stack becomes as shown in below figure.

T e B s o N g g T B Y I BT

TOP

step 1@ IF TOP = NULL The agorithm to delete an element from a stack.

PRINT "iDERFLOW™
[FH_FI-I:;:{'IE ;'“' S In Step 1, wefirst check for the UNDERFLOW condition.

Step Z: SET PTR = TOP In Step 2, we use a pointer PTR that points to TOP.

Step 31 SET TOP = TOP—=MEXT In Step 3, TOP is made to point to the next node in sequence.

:;Eﬁ : ;':E_F TR In Step 4, the memory occupied by PTR is given back to the free
[T | pool.

45 APPLICATIONSOF STACKS

In this section we will discuss typical problems where stacks can be easily applied for asimple and efficient
solution. The topicsthat will be discussed in this section include the following:

Reversing alist

Parentheses checker

Conversion of aninfix expression into a postfix expression
Evaluation of a postfix expression

Conversion of aninfix expression into a prefix expression
Evaluation of a prefix expression

Recursion
Tower of Hanoi

4.6 REVERSING LIST
A list of numbers can be reversed by reading each number from an array starting from the first index and

pushing it on a stack. Once al the numbers have been read, the numbers can be popped one a atime
and then stored in the array starting from the first index.

s Reverse a linked list using stack
&
a) - o I e
K Original linked list
pash Zoms from the
(pop Heowes Brooe the linked list into the stack
Ak Lo ersale Yho Babod it
< S
et o (e .
35 0E—EE- B
: ¢
Reversed linked list k

4.7 EVALUATION OF ARITHMETIC EXPRESSIONS

Polish Notations:

Infix, postfix, and prefix notations are three different but equivalent notations of writing agebraic
expressions.But before learning about prefix and postfix notations, let us first see what an infix notation
is. We dll arefamiliar with the infix notation of writing algebraic expressions.

While writing an arithmetic expression using infix notation, the operator is placed in between the
operands. For example, A+B; here, plus operator is placed between the two operands A and B. Although
it is easy for us to write expressions using infix notation, computers find it difficult to parse as the
computer needs a lot of information to evaluate the expression. Information is needed about operator
precedence and associativity rules, and brackets which override these rules.

So, computers work more efficiently with expressions written using prefix and postfix notations. Postfix
notation was developed by Jan Lukasiewicz who was a Polish logician, mathematician, and philosopher.
His aim was to develop a parenthesis-free prefix notation (also known as Polish notation) and a postfix
notation, which is better known as Reverse Polish Notation or RPN.

In postfix notation, as the name suggests, the operator is placed after the operands. For example, if an
expression is written as A+B in infix notation, the same expression can be written as AB+ in postfix
notation. The order of evauation of a postfix expression is always from left to right. Even brackets
cannot alter the order of evaluation.

The expression (A + B) * C can be written as.
[AB+]*C
AB+C* in the postfix notation

A postfix operation does not even follow the rules of operator precedence. The operator which occurs first
inthe expression is operated first on the operands.

For example, given a postfix notation AB+C*. While evaluation, addition will be performed prior to
multiplication. Thus we see that in a postfix notation, operators are applied to the operands that are
immediately left to them. In the example, AB+C*, + is applied on A and B, then * is applied on the
result of addition and C.

A+ B Infix (A+B)*C Infix
Prefix Postfix Prefix Postfix
+AB AB+ *+ABC AB+C*

Conversion of an Infix Expression into a Postfix Expression:

Let | be an algebraic expression written in infix notation. | may contain parentheses, operands, and
operators. For simplicity of the algorithm we will use only +, —, *, /, % operators.

The precedence of these operators can be given as follows:
e Higher priority *, /, %
o Lower priority +, —

No doubt, the order of evaluation of these operators can be changed by making use of parentheses. For
example, if we have an expression A + B * C, then first B * C will be done and the result will be added
to A. But the same expression if written as, (A + B) * C, will evaluate A + B first and then the result will
be multiplied with C.

Example: Convert the following infix expressions into postfix expressions.
Solution:

(a) (A-B) * (C+D)

[AB-] * [CD+]

AB-CD+*

(b) (A +B)/(C+
D)-(D* E)
[AB+] / [CD+] —
[DE*]
[AB+CD+/] —
[DE*]
AB+CD+/DE*—

The algorithm given below transforms an infix expression into postfix expression. The algorithm accepts
an infix expression that may contain operators, operands, and parentheses.

For simplicity, we assume that the infix operation contains only modulus (%), multiplication (*), division
(/), addition (+), and subtraction (—) operators and that operators with same precedence are performed
from left- to-right.

The algorithm uses a stack to temporarily hold operators. The postfix expression is obtained from left-to-
right using the operands from the infix expression and the operators which are removed from the stack.
Thefirst step in this algorithm is to push aleft parenthesis on the stack and to add a corresponding right
parenthesis at the end of the infix expression. The algorithm is repeated until the stack is empty.

Step 1 Add ")" to the end of the infix expressiocn
step Z2: Push (" om fo the stack
Step 3: Repeat until each character in the infix notation is scanned
IF a "(" iz encountered, push it on the stack
IF an operand [whather a digit or 3 character) is encountered, add it To the
pastfix expresiion.
IF a ")" iz encountered, then
a. Repeatedly pop from stack and add it to the postfix expression until a
"(" is encountered.
b. Discard the "(". That is, renove the "(* from stack and do not
add ‘1t To the postfix expression
IF an operator O is encourtered, then
a. Repeatedly pop from stack and add each operator (popped from the stack) to the
postfix sxpression which has the same precedence o a higher precedence than 0
b. Push the operator © to the stack
[EMD OF IF]
ttep 4: Repeatedly pop fron the stack and add it to the postrlx expression untll the stack 1s empty
Step 5. EXIT

Example: Convert the following infix expression into postfix expression using the
agorithmA - (B/C+(D%E* F)/G)* H
A-B/C+(D%E*F)/G)* H)

Infix Character

Scanned Stack Postfix Expression

=]

L, L, L,
af 38 |58 |ad

S R P P

~ [~

(=li=}jiw]wjiw]l=]]=}iw}jw)e}le
.|.|I'I'II'I'II'I'II'I'II'I'II'I'II'I'II'I'II'I'I

¥ %

B L s b b b by L L [L L e b b e L e e
|
alalalalalalalalal alalalals)

MMM (M M7 M
~ =~

ot ||

||z

B EEEEEEEEEEEEEEEEEEE
ezl v RivsRioRies BiesRies Qe Rl esRle R R ssRis-HIs:RieRls=R1es
Nnninininnninnnlnln|nln

Shs R RRRRR RS S

L I [R e N A A A = A P o e - R
]
m

O 13 30| 3¢ 3¢ [3¢ [2¢
Sooolo

AR I A)

Evaluation of a Postfix Expression:

The ease of evaluation acts as the driving force for computers to translate an infix notation into a postfix
notation. That is, given an algebraic expression written in infix notation, the computer first converts the
expression into the equivalent postfix notation and then evaluates the postfix expression.

Both these tasks—converting the infix notation into postfix notation and evaluating the postfix

expression— make extensive use of stacks as the primary tool.

Using stacks, any postfix expression can be evaluated very easily. Every character of the postfix
expression is scanned from left to right. If the character encountered is an operand, it is pushed on to the
stack. However, if an operator is encountered, then the top two values are popped from the stack and the
operator is applied on these values. The result isthen pushed on to the stack.

Step

Step

Step

Step

Step

: Add &)"

a:

S3

at the end of the
postfix expression

! Scan every character of the

postfix expression and repeat
Steps 3 and 4 until ")"is encountered

: IF an operand 15 encountered,

push it on the stack
IF an operator O is encountered, then
a. Pop the top two elements from the
stack as A and B as A and B
b, Evaluate B 0 A, where A is the
topmost element and B
is the elament below AL
C. Push the result of evaluation
on the stack
[END OF IF]
SET RESULT equal to the topmost element
of the stack
EXIT

Algorithm to evaluate a postfix expression

Charscter Scanned Stack

a9 a9

3 9,3

4 8,3, 4

v g, 12

& 3, 1, &

s 8, 20

4 g, 20, 4

f g, §

- 4

Evauation of a

postfix expressionL et us now take an exampl e that makes use of this algorithm.
Consider the infix expression givenas9 — ((3 * 4) + 8) / 4. Evauate the expression.
Theinfix expression 9 — ((3* 4) + 8) / 4 can be writtenas9 34 * 8 + 4/ — using postfix notation.

Factorial Calculation:

.....

W o -

; 4 * facti3)
Z-: X
¢ ' v 1* i)
6 .
= o 3 S FaiNA)
-
r =
____ 9
'ﬁ‘;IIHIHIl
:l

Stack

Woknoani=n"n-1l=n"n-1"n-21and soon

Récursion; factored (n) = n * 1acions 1i-1)

5* factorial (4) > Push(5]

top
4" factoral (3) > Pushié

3* factorial (2) > Pueh(3)
m 2* factorial (1) = Push(2)
fact(1) reums 1 > Push(1)

Fop(1)

Papi2)

Pop(3)

Popi4)

Pop(5)

Factorial valua = 1

Factorial value =1"2=2
Factorial value =2* 3=§6
Factorial value =6 4 = 24
Factorial value =24 * 5 = 120

Stack Factorial value = 120

M.Sc. (Computer Science)
SEMESTER-2
COURSE: DATA STRUCTURE AND ALGORITHMS

UNIT 5: TREE

5.1. BASIC TERMINOLOGY IN TREES

5.2BINARY TREES

5.3. REPRESENTATION OF BINARY TREESIN THE MEMORY

5.4. TRAVERSING A BINARY TREE

5.5. BINARY SEARCH TREES

5.6. OPERATIONSON BINARY SEARCH TREES

5.7. BALANCED BINARY TREES- AVL TREES

5.8. APPLICATIONSOF TREES

5.1 BASIC TERMINOLOGY IN TREES

A treeisrecursively defined as a set of one or more nodes where one node is designated as the root of the
tree and all the remaining nodes can be partitioned into non-empty sets each of which is a sub-tree of the
root.

Figure 4.1 shows a tree where node A is the root node; nodes B, C, and D are children of the root node
and form sub-trees of the tree rooted at node A.

ool node

™y

Root node The root node R isthe topmost node in thetree. If R = NULL, then it meansthetreeis
empty.Sub-trees If the root node R isnot NULL, then thetrees T1, T2, and T3 are called the sub-
trees of R. Leaf node A node that has no children is called the leaf node or the terminal node.

Path A sequence of consecutive edgesis called a path. For example, in Fig. 9.1, the path from the root
node Ato node |l isgivenas: A, D, and I.

Ancestor node An ancestor of a node is any predecessor node on the path from root to that node. The
rootnode does not have any ancestors. Inthetree givenin Fig. 9.1, nodes A, C, and G arethe ancestors of
node K.

Descendant node A descendant node is any successor node on any path from the node to a leaf node.
Leaf nodes do not have any descendants. In the tree given in Fig. 9.1, nodes C, G, J, and K are the
descendants of node A.

Level number Every node in the tree is assigned a level number in such a way that the root node is at
level O, children of the root node are at level number 1. Thus, every node is at one level higher than its
parent. So, all child nodes have alevel number given by parent’s level number + 1.

Degr ee Degree of anode is equal to the number of children that anode has. The degree of aleaf nodeis
zero.

v I n-degree In-degree of anode is the number of edges arriving at that node.

v Out-degree Out-degree of a node is the number of edges leaving that node.

52 BINARY TREES

A binary tree is a data structure that is defined as a collection of elements called nodes. In a binary tree,
the topmost element is called the root node, and each node has 0, 1, or at the most 2 children.

A node that has zero children is called a leaf node or aterminal node. Every node contains a data element,
aleft pointer which points to the left child, and aright pointer which points to the right child. The root
elementis pointed by a'root' pointer. If root = NULL, then it means the treeis empty.

Figure 4.2 shows a binary tree. In the figure, R is the root node and the two trees T1 and T2 are called the
left and right sub-trees of R. T1 is said to be the left successor of R. Likewise, T2 is cdled the right
successor ofR.

Rool__node

1: 1 b

el

(@) (o) (o) (v (12

Note that the left sub-tree of the root node consists of the nodes: 2, 4, 5, 8, and 9. Similarly, the right sub-
tree of the root node consists of nodes: 3, 6, 7, 10, 11, and 12.

In the tree, root node 1 has two successors: 2 and 3. Node 2 has two successor nodes: 4 and 5. Node 4 has
two successors. 8 and 9. Node 5 has no successor. Node 3 has two successor nodes. 6 and 7. Node
6 has two

successors. 10 and 11. Finaly, node 7 has only one successor: 12.

A binary tree is recursive by definition as every node in the tree contains a left sub-tree and a right sub-
tree. Even the terminal nodes contain an empty left sub-tree and an empty right sub-tree.
Look at Fig. 4.2, nodes 5, 8, 9, 10, 11, and 12 have no successors and thus said to have empty sub-trees.

Terminology:

Parent If N isany nodein T that has left successor S1 and right successor S2, then N is called the parent
of S1 and S2. Correspondingly, S1 and S2 are called the left child and the right child of N. Every node
other than the root node has a parent.

Raot f‘<‘x?1F:
[Lovel D) -,_v('

(Level 1) (2) { :.tf
(Leavel 2) 4."! L 5Ifl (\’ t-;\;
,'?-_‘- - N

(Level 3) (8) (o) Go) (11 (12

Level number Every node in the binary tree is assigned a level number (refer Fig. 4.3). The root node is
defined to be at level 0. The left and the right child of the root node have a level number 1. Similarly,
every nodeis at one level higher than its parents. So al child nodes are defined to have level number as
parent's level number + 1.

Degree of a node It is equal to the number of children that a node has. The degree of aleaf node is zero.
For example, inthe tree, degree of node 4 is 2, degree of node 5 is zero and degree of node 7is 1.

Sibling All nodes that are at the same level and share the same parent are called siblings (brothers). For
example, nodes 2 and 3; nodes 4 and 5; nodes 6 and 7; nodes 8 and 9; and nodes 10 and 11 are siblings.

Leaf node A node that has no children is called a leaf node or aterminal node. The leaf nodesin the tree
ae 8,9, 5, 10, 11, and 12.

Similar binary trees Two binary trees T and T’ are said to be similar if both these trees have the same
structure. Figure 4.4 showstwo similar binary trees.

Trea T Tree T"

A (F Trea T Trea T
o N () (Al
B (&) (6 (1 N\ 7
b "'.__ i o oty ol _.:- e -~ :". oy
"'Di"u P |E..J 15-’ rNEJ ~E,
'.__.: e l-__q\ 1}-\"'-' f:h _:"\-.,_l'
= R DE @ E
s

Copies Two binary trees T and T’ are said to be copies if they have similar structure and if they have
same content at the corresponding nodes. Figure 4.5 showsthat T isacopy of T.

Edge It isthe line connecting a node N to any of its successors. A binary tree of n nodes has exactly n— 1
edges because every node except the root node is connected to its parent via an edge.

Path A sequence of consecutive edges. For example, in Fig. 4.3, the path from the root node to the node 8
isgivenas: 1, 2, 4, and 8.

Depth The depth of anode N is given as the length of the path from the root R to the node N. The depth
of theroot node is zero.

Height of atree It is the total number of nodes on the path from the root node to the deepest node in the
tree. A tree with only aroot node has a height of 1.

A binary tree of height h has at least h nodes and at most 2" — 1 nodes. This is because every level will
have at least one node and can have at most 2 nodes. So, if every level has two nodes then a tree with
height h will have at the most 2" — 1 nodes as at level 0, there is only one element called the root. The
height of abinary treewith n nodes is at least log2(n+1) and at most n.

I n-degr ee/out-degree of a node It is the number of edges arriving at a node. The root node is the only
nodethat has an in-degree equal to zero. Similarly, out-degree of a node isthe number of edges leaving
that node.

Binary trees are commonly used to implement binary search trees, expression trees, tournament trees,
andbinary heaps.

CompleteBinary Trees

A complete binary tree is a binary tree that satisfies two properties. First, in a complete binary tree,
everylevel, except possibly the last, is completely filled. Second, all nodes appear as far |eft as possible.
In a complete binary tree Tn, there are exactly n nodes and level r of T can have at most 2" nodes. Figure

9.7shows a complete binary tree.

— Notethat in Fig. 4.6, level 0 has 2° = 1 node, level 1 has 2 =2
X _'_~,_"._- - nodes, level 2 has 22 = 4 nodes, level 3 has 6 nodes whichis
- less than the maximum of 2° = 8 nodes.

— r—
@ @
.H} e ,,--} ™ In Fig. 4.6, tree T1zhas exactly 13 nodes. They have been
(2 {57 (8 7 purposely labelled from 1 to 13, so that it is easy for the
i it bl e reader to find the parent node, the right child node, and the
e s = e e . . .
@ «Eﬁ' i L{: oy (G2 (3 left child node of the given node.

The formula can be given as—if K isaparent node, then itsleft child can be calculated as 2 x K and its
rightchild can be calculated as2 x K + 1.

For example, the children of the node 4 are 8 (2 x 4) and 9 (2
x 4+ 1).Similarly, the parent of the node K can be
caculated as | K/2 |.

Given the node 4, its parent can be calculated as | 4/2 | = 2. The height of atree Tn having exactly n
nodes isgivenas: Hn = |log2 (n+1) |

NOTE: Thismeans, if atree T has 10,00,000 nodes, then its height is 21

Extended Binary Trees

A binary tree T is said to be an extended binary tree (or a2-tree) if each node in the tree has either no
child orexactly two children. Figure 4.7 shows how an ordinary binary tree is converted into an extended
binary tree. In an extended binary tree, nodes having two children are called internal hodes and nodes
having no childrenare called external nodes. In Fig. 4.7, the internal nodes are represented using
circles and the externa nodesare represented using squares.

To convert a binary tree into an extended tree, every empty sub-tree is replaced by a new node. The
originalnodes in the tree are the internal nodes, and the new nodes added are called the external nodes.

S

h2: > ;
D 9 2. E O .
) I.-:E = = 5 &
e = -
= E = B BH
(1) (b

5.3 REPRESENTATION OF BINARY TREESIN THE MEMORY

In the computer’s memory, a binary tree can be maintained either by using a linked representation or by
usinga sequential representation.

Linked representation of binary trees In the linked representation of a binary tree, every node will
havethree parts: the data element, a pointer to the left node, and a pointer to the right node.

Soin C, the binary tree is built with anode type
given below.struct node

{

struct node *left;int data;

struct node *right;

h

Every binary tree has a pointer ROOT, which points to the root element (topmost element) of the tree. If
ROOT = NULL, then the tree is empty. Consider the binary tree given in Fig. 4.2. The schematic
diagram of the linked representation of the binary treeis shown in Fig. 4.8.

In Fig. 4.8, the left position is used to point to the left child of the node or to store the address of the left
child of the node. The middle position is used to store the data. Finally, the right position is used to point
to the rightchild of the node or to store the address of the right child of the node. Empty sub-trees are
represented using X (meaning NULL).

T.(2) (T 2 3
’,/‘\' \ / "_I y
d J"l :, -~ A':, } ™~ .-'"'
9 & (8) @ 4 |5 | X G %7
/ '\.. \ \ 1]
@ @ @ uy 2 x| & |x % |a|x % |10 x x| 1] x x| 12

Sequentia representation of binary trees Sequential representation of trees is done using single or one-
dimensional arrays. Though it is the simplest technique for memory representation, it is inefficient as it
requires alot of memory space.

A sequentia binary tree follows the following rules:

A one-dimensional array, called TREE, is used to store the elements of tree.

Theroot of the tree will be stored in the first location. That is, TREE[1] will store the data of
the rootel ement.

The children of anode stored in location K will be stored in locations (2 x K) and (2 x K+1).
The maximum size of the array TREE is given as (2h-1), where hiisthe height of thetree.
An empty tree or sub-treeis specified using NULL. If TREE[1] = NULL, thenthetreeis
empty. Figure 4.9 shows a binary tree and its corresponding sequentia representation. The tree has 11
nodes and itsheight is 4.

NN

ANANEN

A,
L

i il e i

ol O S T TR o T B S S Y o IO '

54 TRAVERSING A BINARY TREE

Traversing a binary tree is the process of visiting each node in the tree exactly once in a systematic way.
Unlike linear data structures in which the elements are traversed sequentially, tree is a nonlinear data
structure in which the elements can be traversed in many different ways. There are different algorithms
for tree traversals. These algorithms differ in the order in which the nodes are visited. In this section, we
will discuss these algorithms.

Pre-order Traversal

To traverse anon-empty binary tree in pre-order, the following operations are performed recursively at each
node. The algorithm works by:

1. Visiting theroot node,
2. Traversing the left sub-tree, and finaly
3. Traversing theright sub-tree.

Pre-order traversal is also called as depth-first traversal. In this algorithm, the left sub-tree is always
traversedbefore the right sub-tree. The word ‘pre’ in the pre-order specifies that the root node is
accessed prior to anyother nodes in the left and right sub-trees. Pre-order algorithm is also known as the

NLR traversal algorithm (Node-Left-Right).

Step 1: Repeat Steps 2 to 4 while TREE |= BULL

Step X! Write TREE -=DATA
Step 3 PREQRDER{ TREE —= LEFT)
Step 4: PREQROER{ TREE —= RIGHT }

[END ©F LOOR]
Step 5: END

In-order Traversal

) (&
INtAVvERSAL ORDER:
Al B De @ H. be EatEuFe L Ja mmdd K

To traverse a non-empty binary tree in in-order, the following operations are performed recursively at

eachnode. The algorithm works by:
1. Traversing theleft sub-tree,
2. Visiting theroot node, and finally
3. Traversing theright sub-tree.

3Cep L: Repeat 31eps 2 To 49 witdle TREE i= WNuLL

Step 2: INORDER{ TREE —= LEFT }

Step 3 Writa TREE —» DATA

Step 4: INORDER(| TREE —= RIGHT)
LEND: OF LOOP]

Step 5: END

In-order traversa is adso caled as symmetric
traversal. In this algorithm, the left sub-tree is
always traversed before the root node and the right
sub-tree.

The word ‘in’ in the in-order specifies that the root
node is accessed in between the left and the right
sub-trees. In-order agorithm is also known as the
LNR traversal algorithm (L eft-Node-Right).

TRAVERSAL ORDER:
G D Ha La

®

B Ei A, £ I, F, K, and 1

Post-order Traversal

To traverse a non-empty bi
eachnode. The algorithm

nary tree in post-order, the following operations are performed recursively at
works by:

1. Traversing theleft sub-tree,
2. Traversing theright sub-tree, and finally

3. Visiting theroot node.

In this algorithm, the left sub-tree is always traversed before the right sub-tree and the root node. The
word‘post’ in the post-order specifies that the root node is accessed after the left and the right sub-

trees.

Post-order algorithm isaso known as the LRN traversal algorithm (L eft-Right-Node).

Step 1: Hepeat Steps 2 to 4 while TEEE |= WULL
Step 2! POSTORDER(TREE —= LEFT)
Step 3: FOSTORDERL TREE —= RIGHT)
Step 4;: Hrite TREE —=DATA
[END OF LOOP]
Step G: EMD

—

g

TRAVERSAL ORDER:
G e Ha B RSB TRy

'-.A
¥
I"'-E-'
(L]

5.5 BINARY SEARCH

c)
3

& g

H'E;.

o @

b
&
s

“.
Te F. €. aamd: A

TREES

A binary search tree, also known as an ordered binary tree, isavariant of binary treesin which the nodes

are arranged in an order.

In abinary search tree, al the nodesin the left sub-tree have a value less than

that of theroot node. Correspondingly, all the nodesin the right sub-tree have a value either equal to or
greater than the root node. The same rule is applicable to every sub-tree in the tree. (Notethat a binary
search tree may or maynot contain duplicate values, depending on itsimplementation.)

The root node is 39. The left sub-tree of the root node
consists of nodes 9, 10, 18, 19, 21, 27, 28, 29, and 36.

All these nodes have smaller values than the root node. The
right sub-tree of the root node consists of nodes 40, 45, 54,
59, 60, and 65.

Recursively, each of the sub-trees also obeys the binary
search tree constraint.

For example, in the left sub-tree of the root node, 27 is the
root and all elementsin its left sub-tree (9, 10, 18, 19, 21) are
smaller than 27, while al nodes in its right sub-tree (28, 29,
and 36) are greater than the root node’s value.

Binary search trees also speed up the insertion and deletion operations. The tree has a speed advantage
whenthe data in the structure changes rapidly.

Binary search trees are considered to be efficient data structures especially when compared with sorted
lineararrays and linked lists. In a sorted array, searching can be done in O(log2n) time, but insertions
and deletionsare quite expensive. In contrast, inserting and deleting elementsin alinked list is easier,
but searching for an element is done in O(n) time.

However, in the worst case, abinary search tree will take O(n) time to search for an

element. To summarize, abinary search treeisabinary tree with the following

properties:

The left sub-tree of anode N contains valuesthat are less than N’s value.
Theright sub-tree of anode N contains values that are greater than N’s value.
Both the left and the right binary trees also satisfy these properties and, thus, are binary search trees.

Example:

Create abinary search tree using the following data elements: 45, 39, 56, 12, 34, 78, 32, 10, 89, 54, 67, and

81.

(a5)
H.‘
2%
® @
{Step 3)

aa) o = / 3 \‘\
73% 2)fg’l "{ ngu {78) 15/) 78)
& 4 \ 3\
U 12 {78 %_4\ i)‘\
N\ X ">_/ \.1_0.' '\3_4
@ @ ’
{Step 5) (Step 6) 32 (step) (32} (step 8)

4 »(&é\; @ 5)

J

56) 56
12% 12@75\-
bd; 6%@189
32

32) (Step 9) = (Step 10) \3-2/ {Step 11) 32 (Step 12)

56 OPERATIONSON BINARY SEARCH TREES

Inserting a New Nodein aBinary Search Tree

The insert function is used to add a new node with a given value at the correct position in the binary
search tree. Adding the node at the correct position means that the new node should not violate the
properties of the binary search tree. The initia code for the insert function is similar to the search
function. Thisis because we first find the correct position where the insertion has to be done and then add
the node at that position. The insertion function changes the structure of the tree. Therefore, when the
insert function is called recursively, the function should return the new tree pointer.

The insert function requires time proportional to the height of the tree in the worst case. It takes O(log n)
time to execute in the average case and O(n) time in the worst case.

Insert {TREE, WAL)

ttop 1: TIF TREE = MLLL
Allocate mamory Far TREE
SET TREL —=DPATA = Wal
CET TREE - » LEFT = TREE .= RIGHT = MILL
ELSE
IF WAL « TREE—=DATA
TrecenbE(TAEE.- = LEFT, WAL])
FLSE
Trra@rt (TREE —» RTGHT, WALY
[y o= 1F]
[EMC OF IF]
S5tep 2: EWND

Example: Inserting nodes with values 12 and 55 in the given binary search tree

(Step 1) (Step 2) {Step 3) {Step 4) (Step 5) (Step 6) (Step 7)

@ % @) @)) @&

/ \ / /

®® @ o -~ ® © @ ® e @6
/ \ ! \‘~. >_ >X h < 7
G SO BOD G GO &6

-

Deleting a Nodefrom a Binary Search Tree

The delete function deletes a node from the binary search tree. However, utmost care should be taken that
theproperties of the binary search tree are not violated and nodes are not lost in the process.

Case 1: Deleting a Node that has
No ChildrenCase 2: Deleting a
Node with One Child
Case 3: Deleting a Node with Two Children

If we have to delete node 78, we can ssimply
remove this node without any issue.
Thisisthe simplest case of deletion.

|Step 1 {Step 3 iStep 1} [Stepd]
LT (4= a5 [as)
":_-..'. e . =
B A (A8 e |
i] 'L o o :. F, g h "y
=y e CETTI T {Bd)
. b VY fﬂ
55 (58 (28 =)
—— o ! a!
Diedinlin sewdy 78

Casel: Deleting aNodethat has No Children

iShap 1| {Sop X) | S4mn 3] {Skap 45
gﬁ. Ta_:_n L:"f_::' .“‘Ihf.
i3 (58 54 (B (&) (6 W) (B
- S i e ; o cir i,
s i F HI\'- L F I.
BN @B 8% &
b
.y ek Ny Riadlion S4 wilhi 55
55 {8 68
Daleting mode 5 fraw Bl pivian hinary asdied tres

To handle this case, the node’s child is set as the
child of the node’s parent. In other words, replace the
node with its child. Now, if the node is the left child
of its parent, the node’s child becomes the left child
of the node’s parent. Correspondingly, if the node is
the right child of its parent, the node’s child becomes
theright child of the node’s parent.

Look at the binary search tree shown in figure and
see how deletion of node 54 is handled.

Case 2: Deleting a Node with One Child

To handle this case, replace the node’s value
with its in-order predecessor (largest value in the
left sub-tree) or in-order successor (smallest
value in the right sub-tree).

The in-order predecessor or the successor can
then be deleted using any of the above cases.

Look at the binary search tree given in figure and
see how ddetion of node with value 56 is
handled.

iStep 1) | Ghep 2| |Siep 3 Fep &)
A ‘4K LTy “an)
P F o e ¥
.__ ___.' .|_ __' ._ _.' o
T T £ L LT
‘.'.d.. .E.B' "E‘h‘i‘ -:.E- "-h.l .n':l‘:. l:‘='|' |'h'l'-|
— — "_{ L _-:. _-\. =g S —r_h:l
s m ® W ® ()
Fwalaca noda 5B with 65 Dokatn feaf noda 55
Diglalivyy node 56 from: e given binary search hee

5.7 BALANCED BINARY TREES- AVL TREES

AVL treeis a self-balancing binary search tree invented by G.M. Adelson-Velsky and E.M. Landis in
1962. Thetreeis named AVL in honour of itsinventors. In an AVL tree, the heights of the two sub-trees
of a node may differ by at most one. Due to this property, the AVL tree is also known as a height-
balanced tree. The keyadvantage of using an AVL treeis that it takes O(log n) time to perform search,
insert, and del ete operations inan average case as well as the worst case because the height of thetreeis
limited to O(log n).

The structure of an AVL tree is the same as that of a binary search tree but with a little difference. In its
structure, it stores an additional variable called the Balance Factor. Thus, every node has a balance factor
associated with it. The balance factor of a node is calculated by subtracting the height of its right sub-
tree fromthe height of its left sub-tree. A binary search tree in which every node has a balance factor
of -1, 0, or 1 issaid to be height balanced. A node with any other balance factor is considered to be
unbalanced and requires rebalancing of the tree.

Balance factor = Height (left sub-tree) — Height (right sub-tree)

o If the balance factor of a node is 1, then it means that the left sub-tree of the tree is one level higher
than that of the right sub-tree. Such atree istherefore called as a left-heavy tree.

o If the balance factor of anode is 0, then it means that the height of the left sub-tree (longest path in the
left sub-tree) is equal to the height of the right sub-tree.

¢ |f the balance factor of a node is —1, then it means that the left sub-tree of the tree is one level lower
than that of the right sub-tree. Such atree istherefore called as aright-heavy tree.

5.7.1 Operationson AVL Trees

Searching for aNodein an AVL Tree

Searching in an AVL tree is performed exactly the same way as it is performed in a binary search tree.
Due to the height-balancing of the tree, the search operation takes O (log n) time to complete. Since
the operationdoes not modify the structure of the tree, no specia provisions are required.

Inserting a New Nodein an AVL Tree

Insertion in an AVL treeis also done in the same way as it is done in a binary search tree. In the AVL
tree, thenew node is always inserted as the leaf node. But the step of insertion is usually followed by an

additional stepof rotation. Rotation is done to restore the balance of the tree.

However, if insertion of the new node does not disturb the balance factor, that is, if the balance factor of
every nodeis still -1, O, or 1, then rotations are not required.

To perform rotation, our first task isto find the critical node. Critical node is the nearest ancestor node on
the path from the inserted node to the root whose balance factor is neither -1, O, nor 1.

The second task in rebalancing the tree is to determine which type of rotation has to be done. There are

four types of rebalancing rotations and application of these rotations depends on the position of the
inserted node with reference to the critical node.

The four categories of rotations are:

> LL rotation: The new node isinserted in the left sub-tree of the left sub-tree of the critical node.

> RR rotation: The new node isinserted in the right sub-tree of the right sub-tree of the critical
node.

> LR rotation: The new node isinserted in the right sub-tree of the left sub-tree of the critical
node.

> RL rotation: The new node isinserted in the left sub-tree of the right sub-tree of the critical
node.

LL Rotation

Example Consider the AVL tree given in Fig. and msert 18 into 1t

Soiution
| . —~0
-~ e~ -
5) o) 'é@
q / \\. U 4 _g' \ 0 1 /'- \\ 0
Vo |/‘~\ 7 { ’f\)_"‘
"‘/ﬁi} \63) ‘:mj{ I\@ '\,27 J \f%'
{30 14 30 04 0 50
\ o v N '/—‘\ s P
2 89 27 39 a8} 38) 183
/
0
8] (Step 1) (Step 2)
Figure AVL tree
RR Rotation
Example Consider the AVL tree given in Fig. and msert 89 mto i1,
Solution
_— 2 —0
(45) a5) (63)
e =
0‘/—\/ \ 0 0(—< \ -1 0 4 \ -1
@5 @ 36 ;@ 9 @
/ \ . \ / \ \
» y |- Ao, ~1 0-< — o
!\ 5? J (\7_:': [\54) { .?;' \ I@‘. (:Si) ({9\4
N0
N
(89
(Step 1} — (Step 2)

LR and RL Rotations

-1 2 \ N

(@ WY W
t‘r\"’v‘ A y\’ \1-—- 0 L X L) A 3
' \ sl | & () 8 (&) IR ")
W [pe m. o b :] w >
A\ = /. \ / \ / P S \

g dap Y -~ 0l el % S
T) ¢ L {
I«'s ')5« l " W& '\{ " C,"(ml w -3)

\
\

: : » ; et . - SO
«4@]] ;_L’LEM B B E.Ei
i1 oz

"\ ! L
Mew Wt :W‘! " ahr‘t) Felghtsh
Flgen (8 otebo 4w AL Y0 Fimer T coon e AL v

Example: Construct an AVL tree by inserting the following elements in the given order.
63, 9, 19, 27, 18, 108, 99, 81.

Alier LR Rolation
(Step 1) (Step 2) {Step 3) (Step 4)

0

0 0

Alter LL Rotation
(Sle:; 10}

Deleting a Nodefrom an AVL Tree

Deletion of anodein an AVL treeissimilar to that of binary search trees. But it goes one step ahead.
Deletionmay disturb the AV Lness of the tree, so to rebalance the AVL tree, we need to perform
rotations.

58 APPLICATIONSOF TREES

e Trees are used to store simple as well as complex data. Here simple means an integer value, character
value and complex data means a structure or a record.

e Trees are often used for implementing other types of data structures like hash tables, sets, and maps.

o A self-balancing tree, Red-black treeis used in kernel scheduling, to preempt massively
multiprocessor computer operating system use.

o Another variation of tree, B-trees are prominently used to storetree structures on disc. They are used
to index a large number of records.

o B-trees are also used for secondary indexes in databases, where the index facilitates a select operation
to answer some range criteria.

e Trees are an important data structure used for compiler construction.

e Trees are a so used in database design.

e Treesare used in file system directories.

e Trees are also widely used for information storage and retrieval in symbol tables.

5.8.1 Expression Trees

D Binary trees are widely used to store algebraic expressions.
_./tx_ai\\ For example, consider the algebraic expression given as.
s ~

5 DN

) (,: Exp=(a-b)+(c*d

// \"‘, 4 .‘\

/ \ 4) H ' i i

‘a ;/6\ (e ,.)a\: This expression can be represented using abinary tree as
i &\ & shown in Figure.

Given an expression, Exp = ((a+ b) — (c* d)) % ((e~f) / (g— h)), construct the corresponding binary tree.

L
-
2l AL
g e 4 e
|'"-¢] .."‘j- -ﬂ‘j =
} ..'-\._ _e:. \‘-. .1 Y
s - N N T -
g KBy (g} (4) €03 (@) (M) (0

Expression tnoa
5.8.2 Heap Sort

Heap: Recall that a heap is a complete binary tree such that the weight of every node is lessthan the
weightsof its children

A heap with n elements can be conveniently represented asthe first n elements of an array. Furthermore, the

children of g[i] can be found in a[2i] (left child) and g2i + 1] (right child)

Steps:

1. Consider the values of the elements as priorities and build the heap tree.
2. Start deleteMin operations, storing each deleted element at the end of the heap array.

After performing step 2, the order of the elements will be opposite to the order in the heap tree.
Hence, if we want the elements to be sorted in ascending order, we need to build the heap tree in descending
order - the greatest element will have the highest priority.

Note that we use only one array, treating its parts differently:

a When building the heap tree, part of the array will be considered as the heap, and the rest
part - theoriginal array.

b. When sorting, part of the array will be the heap, and the rest part - the sorted array.

Example:

Given an array of 6 elements: 15, 19, 10, 7, 17, and 16 sort it in ascending order using heap sort
Hereisthearray: 15, 19, 10, 7,17, and 6
Building the heap tree:

The array represented as atree, complete but not ordered:

‘nlu_] u]1 _I"It_l _;j_.
5 g

Start with the rightmost node at height 1, the node at position 3 =

Size/2.1t has one greater child and hasto be percolated down:

[rs 1o B 7 [+ o] <y

-
™

A
-
<

After processing array [3] the situation is:

(16 j
),"".,
gl { A
(19) ?
= | N gk
{(#) (47)Ca0)

Next come array [2]. Its children are smaller, so no percolation is needed.
The last nodeto be processed isarray [1]. Itsleft child isthe greater of the

children.Theitem at array [1] has to be percolated down to the left, swapped

with array [2]. Asaresult the situation is:

|u.u|1 I"l“l

T

(18
A %

The children of array [2] are grea;e;,‘ﬁhd it@a;slhasﬁp be moved down further, swapped with array [5]

|u|17}ul7|u|ul

(19)
St
. ey
17 (16)
PV S
(7) (15) (10)
Now thetreeis ordered, and the binary
heap is built.Sorting - performing
deleteM ax operations: Delete the top
element 19.
Store 19 in atemporary place, a hole is created at the top
17 |16 |7 |15 | 10
19 —~L -
(7)) (16)
. T

(7)) C18)C10)

Swap 19 with the last element of the heap.
As 10 will be adjusted in the heap, its cell will no longer be a part

of the heap.Instead it becomes a cell from the sorted array

17 |46 |1 u.

10

Percolate down the hole

a7 0

o] el [l

E] 7N\ -
.

Percolate once more (10 isless that 15, so it cannot beinserted in the previous hole)

17 (15|16 | 7 - (1o (10)
Y S o
e a—
E] f\ qs) [48)
L3 46
¥ 3
(1)

Now 10 can beinserted in the hole

171567 u- (47)

Delete Max thetop dement 17

Store 17 in atemporary place, aholeis created at the top

|

B

]

Swap 17 with the last element of the heap. o

P
(48) 16)
s \\‘

K W

& (40)

~ -

As 10 will be adjusted in the heap, its cell will no longer be a part

of the heap.Instead it becomes a cell from the sorted array

|

E3

{10)
-
(as) (a8)

(~)

)
~.

The element 10 isless than the children of the hole, and we percolate the hole down:

(16|

[1]

N G @
18) L .10)
> N’

Insert 10 in the hole

DeleteM ax 16
Store 16 in atemporary place, a hole is created at the top

BREDEDER 2 -
|18 'ii,f!.st.l’ >
.—‘A(’v

(2)

Swap 16 with the last element of the heap.

As 7 will be adjusted in the heap, its cell will no longer be a part of the
heap.Instead it becomes a cell from the sorted array

;-/1.‘__:\ po—
~
L A
! (18) (49)
— —
15 4.- — .. thanthe children of the hole)
(18) [\1)
N -
A
‘ ™
1 gl)‘w
O

Insert 7 inthe hole

{\L I
(1" (w)
L @

DeleteM ax the top element 15
Store 15 in atemporary location, aholeis created.

;1
15)
(7) (1]

Swap 15 with the last element of the heap.

As 10 will be adjusted in the heap, its cell will no longer be a part of
the heap.Instead it becomes a position from the sorted array

7 (Sl

10

i)

e,
L)

Store 10 in the hole (10 is greater than the children of the hole)

DeleteM ax thetop element 10

/,-»—a
‘:,}1_./ j

&

l/1]

e 3

Remove 10 from the heap and store it into atemporary |ocation.

* (Bl

10

Swap 10 with the last element of the heap.

As 7 will be adjusted in the heap, its cell will no longer be a part of the heap. Instead it becomes a cell

fromthe sorted array

N

.

\.___l

&

R

Store 7 in the hole (as the only remaining element in the heap

Rl EEER Ed)

.—'\..
5
Q.

7 isthe last element from the heap, so now the array is sorted

The HEAPSORT procedure takes time O(n log n), since the call to BUILD _HEAP takes time O(n) and

eachof the n -1 callsto Heapify takes time O(log n).

M.Sc. (Computer Science)
SEMESTER-2
COURSE: DATA STRUCTURE AND ALGORITHMS

UNIT 6: GRAPHS

6.1. BASIC CONCEPTS

6.2 REPRESENTATION OF GRAPHS

6.3. GRAPH TRAVERSAL ALGORITHMS

6.4. BREADTH FIRST SEARCH

6.5. DEPTH FIRST SEARCH

6.1 BASIC CONCEPTS

A graph is an abstract data structure that is used to implement the mathematical concept of graphs. It is
basically a collection of vertices (aso called nodes) and edges that connect these vertices.

Definition

A graph G is defined as an ordered set (V, E), where V(G) represents the set of vertices and E(G)
representsthe edges that connect these vertices.

vertex

0'6 ©
Undirected

graph edge
Um0

Directed
graph

6.1.1 Graph Terminology

A graph can be directed or undirected. In an undirected
graph, edges do not have any direction associated with
them.

That is, if an edge is drawn between nodes A and B, then
the nodes can be traversed from A to B as well as from B
to A.

A graph GwithV(G) ={A, B, C, D and E} and

E(G) ={(A,B),(B,C), (A, D), (B, D), (D,E), (C,BE)}.

In adirected graph, edges form an ordered pair. If thereis
an edge from A to B, then there is a path from A to B but
not from B to A.

The edge (A, B) is said to initiate from node A (also
known as initial node) and terminate at node B (terminal
node).

A graph GwithV(G) ={A, B, C, D and E} and
E(G)={(A,B),(C,B),(A, D), (B,D), (D, E), (E, O}.

Adjacent nodes or neighbour s For every edge, e = (u, v) that connects nodes u and v, the nodes u and v
arethe end-points and are said to be the adjacent nodes or neighbours.

Degree of a node Degree of anode u, deg(u), is the total number of edges containing the node u. If
deg(u) =0, it meansthat u does not belong to any edge and such a node is known as an isolated node.

Regular graph It is a graph where each vertex has the same number of neighbours. That is, every node
hasthe same degree. A regular graph with vertices of degree k is called a k—regular graph or a regular

graph of degreek.

Path A path P written as P = {VvO0, v1, v2, ..., vn), of length n from a node u to v is defined as a
sequence of (n+1) nodes. Here, u=Vv0, v=vnand vi-1lisadjacenttovi fori=1, 2, 3,..., n.

Closed path A path Pis known as aclosed path if the edge has the same end-points. That is, if vO=vn.

Simple path A path P is known as a smple path if al the nodes in the path are distinct with an exception
that vO may be egual to vn. If vO = vn, then the path is called a closed simple path.

Cycle A path in which the first and the last vertices are same. A simple cycle has no repeated edges or
vertices(except the first and last vertices).

Connected graph A graph is said to be connected if for any two vertices (u, v) in V there is a path from
uto

v. That isto say that there are no isolated nodes in a connected graph. A connected graph that does not
haveany cycle iscalled atree. Therefore, atree istreated as a special graph.

Complete graph A graph G is said to be complete if all its nodes are fully connected. That is, thereis a
path from one node to every other node in the graph. A complete graph has n(n-1)/2 edges, where n is
the number of nodesin G.

Labelled graph or weighted graph A graph is said to be labelled if every edge in the graph is assigned
some data. In a weighted graph, the edges of the graph are assigned some weight or length. The weight
of an edge denoted by w(e) is a positive value which indicates the cost of traversing the edge.

Multiple edges Distinct edges which connect the same end-points are called multiple edges. That is, e =
(u, v)and € = (u, v) are known as multiple edges of G.

L oop An edge that has identical end-pointsis called aloop. That is, e =
(u, u). Multi-graph A graph with multiple edges and/or loopsis
called a multi-graph.Size of a graph The size of a graph isthe total
number of edgesin it.

BI-CONNECTED components

A vertex v of Giscalled an articulation point, if removing v along with the edges incident on v, resultsin
agraph that has at least two connected components.

A bi-connected graph is defined as a connected graph that has no articulation vertices. That is, a bi-
connected graph is connected and non-separable in the sense that even if we remove any vertex from the
graph, the resultant graph is still connected.

A bi-connected undirected graph is a connected graph
o ot that cannot t_Je broken into disconnected pieces by
: ’ﬁ‘)_f{ ,/_) x \ deleting any single vertex.
(®) (€ (1) s (B) (n) : : .
: e o In a bi-connected directed graph, for any two vertices
\-j_g-(; p 4 v and w, there are two directed paths from v to w
}t'{ W I;'-?H 2 which have no vertices in common other than v and w.
@ A E) (R N . .
= = Note that the graph shown in Fig. (a) is not a bi-
" o connected graph, as deleting vertex C from the graph
Figure Non bi-connacted graph results in two disconnected components of the original
graph (Fig. (0)).

(P = i =%
Az ()
il i <
(BT {(C—i0—E;
Bi-rpempited Figem 1 Guagh with
pran| hridpes
rh s 4, s
T) .---\.F!.-'-L_h o 'r'n'.--u_ e L ?.-' o
Ty 1E) [e E—F)
A TR e Lo g g
e e B A
et et .] st
(Theis s mo bridgesy WD 5 A Telige
(A, Pyl (a—{m—er—D
e 3 R = e, S e ne e T
S L]
[BY qar [E]
{C0 s & bridgs) M pdges pm Do es
Figure 2 Graphwith brdges

Asfor vertices, there isarelated concept for edges.
Anedgeinagraphiscaled abridgeif removing
that edge results in a disconnected graph.

Also, an edge in a graph that does not lie on acycle
isabridge. This means that a bridge has at |east one
articulation point at its end, although it is not
necessary that the articulation point islinked to a
bridge. Look at the graph shown in Fig.1.

In the graph, CD and DE are bridges. Consider
some more examples shown in Fig. 2.

6.2 REPRESENTATION OF GRAPHS

There are three common ways of storing graphs in the computer’s
memory.They are:

* Sequentia representation by using an adjacency matrix.

* Linked representation by using an adjacency list that stores the neighbours of a node using a
linkedlist.

* Adjacency multi-list which is an extension of linked representation.

6.2.1 Adjacency Matrix Representation

An adjacency matrix is used to represent which nodes are adjacent to one another. By definition, two
nodesare said to be adjacent if there is an edge connecting them.

In a directed graph G, if node v is adjacent to node u, then there is definitely an edge from u to v.
That is, if vis adjacent to u, we can get from u to v by traversing one edge. For any graph G having n
nodes, the adjacencymatrix will have the dimension of n x n.

In an adjacency matrix, the rows and columns are labelled by graph vertices. An entry aijj in the
adjacency matrix will contain 1, if vertices vi and vj are adjacent to each other. However, if the
nodes are not adjacent, aij will be set to zero. It is summarized in Figure.

Since an adjacency matrix contains only Os and 1s, it is caled a bit matrix or a Boolean matrix. The
entries in the matrix depend on the ordering of the nodes in G. Therefore, a change in the order of

nodes will result in a different adjacency matrix.

From the above examples, we can draw the following conclusions:

For asimple graph (that has no loops), the adjacency matrix has Os on the diagonal .

The adjacency matrix of an undirected graph is symmetric.

The memory use of an adjacency matrix is O(n?), where n is the number of nodesin the graph.

Number of 1s (or non-zero entries) in an adjacency matrix is equal to the number of edges in the graph.
The adjacency matrix for aweighted graph contains the weights of the edges connecting the nodes.

»

P = BEOE | = ABCD
A B c) A[010107((a B
< clotooo|| | B810:1-11
D+—>E poooot||(T D Cl1001
~ ELCO 100 (J\x) ploo 10
(a) Diracted graph (b) Directed graph with loop
ABCDE ABCDE
(A —B)) A01010]) A[04020
\’/ Bl10110 Blo00 70
1 = clo100 1] -~ clo5000
C"*@ D1100 1 E DI000O3
. o Eloo110l| = 3= El0o100
{c) Undirected graph (d) Weightad graph

Figure Graphs and their corresponding adjacency matrices

6.2.2 Adjacency List Representation

An adjacency list isanother way in which graphs can be represented in the computer’s memory.
This structure consists of alist of all nodesin G. Furthermore, every nodeisinturnlinked to its own list
thatcontains the names of all other nodes that are adjacent to it.

The key advantages of using an adjacency list are:

6.2.2.1 Itiseasyto follow and clearly shows the adjacent nodes of a particular node.

6.2.2.2 Itisoften used for storing graphsthat have a small-to-moderate number of edges. That is, an
adjacencylist is preferred for representing sparse graphsin the computer’s memory; otherwise, an
adjacency matrix isagood choice.

6.2.2.3 Adding new nodesin G iseasy and straightforward when G is represented using an
adjacency list.Adding new nodes in an adjacency matrix is adifficult task, asthe size of the
matrix needs to be changed and existing nodes may have to be reordered.

A >B[»>TTH
BT >DTX]
C IEd

0¥ atlEx

Figure Graph ¢ and its adjacency list

B4 TImD] 2] X]
CIEEY
—+{B51X]

[E[S]X]
—{G[1TX]

{Unidrected graphi

Figure Adjacency list for an undirected graph and a weighted graph

6.3 GRAPH TRAVERSAL ALGORITHMS

In this section, we will discuss how to traverse graphs. By traversing a graph, we mean the method of
examining the nodes and edges of the graph. There are two standard methods of graph traversa
which we will discussin this section.

These two methods are:

1. Breadth-first search

2. Depth-first search

While breadth-first search uses a queue as an auxiliary data structure to store nodes for further
processing, the depth-first search scheme uses a stack. But both these agorithms make use of a
variable STATUS. During theexecution of the agorithm, every node in the graph will have the
variable STATUS set to 1 or 2, depending onits current state.

Status | State of the Description
node
1 .RE-RI'-:.- . The 1nitial state of the node N
2 Haiting Nede Moi1s placed an the quede or stack and waiting to be processed
3 .F'I'ﬂ'll'.{'.::":.l:"l'l .hll.-"llz N has bean conpletely processed

6.4 Breadth-first search (BFS):

Breadth-first search (BFS) is a graph search algorithm that begins at the root node and explores al the
neighbouring nodes. Then for each of those nearest nodes, the algorithm explores their unexplored
neighbour nodes, and so on, until it finds the goal.

That is, we start examining the node A and then all the neighbours of A are examined. In the next
step, we examine the neighbours of neighbours of A, so on and so forth. This means that we need to
track the neighbours of the node and guarantee that every node in the graph is processed and no node
is processed morethan once. This is accomplished by using a queue that will hold the nodes that are
waiting for further processing and a variable STATUS to represent the current state of the node.

Stap 1: 5ET S5TATUS = 1 -:I'E:Id}' state}
for each mode in G Adjacency lisis
Ctep 2: Enguaus the starting nroda A e,
and set its STATUS = 2 A B C,D
{walting state) B
Etep 3: Repeat Steps 4 and 5 wntil !
QUEUE is emply C:BG
Step 4; Degueus a node B, Process il C.G
and et jts STATUS = 3 ECE
{procassad state). .
Step 5: Engueue all the neighbours of F:C.H
H that are 1in the ready state G'F H I
fwhosa STATLS = 1) and sat b
their STATUS = 2 H.E |
{walting state) I: F
{END OF LOOF]
Step G; EXIT
————am. - 4 o % ¥ . # .‘_\. i -
T —— Figure Graph G and its adjacency list

Solution:

* The minimum path P can be found by applying the breadth-first search algorithm that begins at city
Aand ends when | is encountered.

* During the execution of the algorithm, we use two arrays. QUEUE and ORIG.

* While QUEUE is used to hold the nodes that have to be processed, ORIG is used to keep track of
theorigin of each edge. Initially, FRONT = REAR = -1.

* Initialy, FRONT = REAR = 1.

Thealgorithm for thisisasfollows:

(8) Add A to QUEUE and add NULL to ORIG.

FROMT = O | QUEUE = &
REAR = O ORIG = %O

(b) Dequeue anode by setting FRONT = FRONT + 1 (remove the FRONT element of QUEUE)
and enqueuethe neighbours of A. Also, add A asthe ORIG of its neighbours.

FROMT = 1 | QUELE = A B L (]
EEAR = ORI = 0 A A, A

(¢c) Deqgueue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of B. Also,
add B as theORIG of its neighbours.

FROMT = 2 | QUEUE = A B C D E
REAR = 4 ORIG = w0 A Fe &

(d) Dequeue anode by setting FRONT = FRONT + 1 and enqueue the neighbours of C. Also, add
C as the ORIG of its neighbours. Note that C has two neighbours B and G. Since B has already
been added to the queue and it is not in the Ready state, we will not add B and only add G.

FRONT = 3 |[CUEUE = A B i Do E L]
REAR = 5 DHRIG - WO a A Y Li

() Dequeue anode by setting FRONT = FRONT + 1 and enqueue the neighbours of D. Also, add
D asthe ORIG of its neighbours. Note that D has two neighbours C and G. Since both of them have
already been added to the queue and they are not in the Ready state, we will not add them again.

FRONT = & | QUIEJE = & B C LB E G

REAR = &5 ORIG = LA [A B B [

(f) Dequeue anode by setting FRONT = FRONT + 1 and enqueue the neighbours of E. Also, add E
as the ORIG of its neighbours. Note that E has two neighbours C and F. Since C has aready been
added to the queueand it is not in the Ready state, we will not add C and add only F.

FRONT = 5 | QUELE = & B C 0 E ix
REAR - & | ORIG - \0 A A A B q E

(g) Dequeue anode by setting FRONT = FRONT + 1 and enqueue the neighbours of G. Also,
add G as theORIG of its neighbours. Notethat G has three neighbours F, H, and I.

FRONT = 6 [TMIELE = & B r o E i = = 2

EEAR = 8 [ORIG = 1.0] 3 A A B L E 1] £l

Since F has aready been added to the queue, we will only add H and |. As | is our final destination,

we stop the execution of this algorithm as soon as it is encountered and added to the QUEUE. Now,
backtrack from | using ORIG to find the minimum path P. Thus, we have PathPasA ->C-> G -> |.

The time complexity can also be expressed asO(|E |+ |V |)
6.5 DEPTH-FIRST SEARCH (DFS)

The depth-first search algorithm progresses by expanding the starting node of G and then going deeper
and deeper until the goal node is found, or until a node that has no children is encountered. When a
dead-end is reached, the algorithm backtracks, returning to the most recent node that has not been
completely explored.

In other words, depth-first search begins at a starting node A which becomes the current node.

Then, it examines each node N along a path P which beginsat A. That is, we process a neighbor of A,
then a neighbour of neighbour of A, and so on. During the execution of the algorithm, if we reach a
path that has a node N that has already been processed, then we backtrack to the current node.
Otherwise, the unvisited (unprocessed) node becomes the current node.

Step 1; SET STATUS = 1 (ready state] for sach mde in G

Step 2 Push the starting nade 4 or the stack and set Acpcency b5ty

fits STTS = 2 (waiting state] bRkl
" i B:E
Shep 3: Repeat Stept 4 and 5 until STAK i3 sty COB G
Step & Pop the top rode M, Pracess it and set It5 D:C G
STATLS = 3 [processed state) ECF
Step 5; Push on the stack all the neighdours of N that F:C.H
e in the ready state [whose STATIS = 1) and G:F, H.|
set their STATUS = 2 (uaiting state) H.E, |
[ED OF LOGH] I
Step b: EAIT

Figure Graph G and its adjacency list

Consider the graph G given in Figure. The adj a.cency list of G isalso given. Suppose we want to print
all the nodes that can be reached from the node H (including H itself). One aternative isto use a
depth-first search of G starting at node H. The procedure can be explained here.

€ Push H onto the stack.
| STACK H
(b) Pop and print the top element of the STACK, that is, H. Push all the neighbours of H
onto the stackthat are in the ready state. The STACK now becomes
PRINT: H STACK:E. I |
(© Pop and print the top element of the STACK, that is, I. Push al the neighbours of | onto

the stack thatare in the ready state. The STACK now becomes
PRINT: I STACK:E. F

(d) Popand print the top element of the STACK, that is, F. Push all the neighbours of F onto the
stack that arein the ready state. (Note F has two neighbours, C and H. But only C will be added, as
H isnot in the ready state.) The STACK now becomes

PRINT: F STACK:E.C

() Pop and print thetop element of the STACK, that is, C. Push all the neighbours of C onto the
stack that arein the ready state. The STACK now becomes

PRINT: C STACK:E. B. G

(f) Pop and print the top element of the STACK, that is, G. Push all the neighbours of G onto the
stack that arein the ready state. Since there are no neighbours of G that arein the ready state, no
push operation is performed. The STACK now becomes

PRINT: G STACK:E. B

(g) Pop and print the top element of the STACK, that is, B. Push all the neighbours of B onto the
stack that arein the ready state. Since there are no neighbours of B that are in the ready state, no push
operation is performed. The STACK now becomes

PRINT: B STACK: E |

(h) Pop and print the top element of the STACK, that is, E. Push al the neighbours of E onto the
stack that arein the ready state. Since there are no neighbours of E that are in the ready state, no
push operation is performed. The STACK now becomes empty.

PRINT. E STACK! |

Sincethe STACK is now empty, the depth-first search of G starting at node H is complete and
the nodeswhich were printed are: H,I,F, C, G, B,E.

These are the nodes which are reachable
from the node H.The time complexity can

be given as (O(|V| + |E))).

M.Sc. (Computer Science)
SEMESTER-2
COURSE: DATA STRUCTURE AND ALGORITHMS

UNIT 7: SEARCHING

7.1. LINEAR SEARCH
7.2 BINARY SEARCH

7.3 FINONACCI SEARCH
7.4. SORTING

7.5. INSERTION SORT
7.6 SELECTION SORT
7.7 EXCHANGE SORT
7.8 BUBBLE SORT

7.9 QUICK SORT

7.10 RADIX SORT

7.11 MERGE SORT

7.1 LINEAR SEARCH:

Definition:

¢ It starts at the beginning of the list and checks every element of the lit.

¢ i.e. It sequentially checks each element of the list until a match isfound or the whole list has
been searched.So it is also called sequential search.

Example:

» Lettheelementsare: 10,6,3,8,9,12,14
» Thesearchelement is: 12
» Now it compare 12 with each and every element.
> Thel2isavailablein 6™ place.
» Sothe searching process is success and element is found
Algorithm:
Step 1: Read
elementsin array
Step 2: Read the

element to search
Step 3: Compare the element to sear and each element in array
sequentiallyStep 4: If match is found then the search success
Step 5: If match is not found upto the end then the search un success
Program: #include <stdio.h>int main()
{
int a[100],n,i,s;
printf("Enter Number of Elementsin
Array:\n");scanf("%d", &n);
printf (" Enter
numbers:\n™)
for(i=0;i <
n; i++)
scanf("%d",
&ai]);
printf("Enter a number to search in
Array:\n");scanf("%d", &9);
for(i=0;i<n;i++)
{
if(s==2[i])
{

printf("Number found\n™);
break;

}

}

if(i==n)

printf("Number
not found\n™);
returnO;

}

7.2 BINARY SEARCH:

Definition;,

» Binary search isthe most popular Search agorithm. It isefficient and also
one of the mostcommonly used techniques that are used to solve problems.

» Binary search sorts the records either in ascending or descending order to gain much better
performancethan linear search.

» Now suppose we have an ascending order record. At the time of search it takesthe middle
record/element, ifthe searching element is greater than middle element then the element mush be
located in the second part

elseitisinthefirst half. In thisway this search agorithm divides the recordsin the two parts
in eachiteration and thus called binary search.
Example:
» Lettheeementsin
ascending order are2 4 6
8101215
» Let the element to search 12
» For searching it compare first
middleelement.2 46 810 12 15
» Themiddle element is8 and is not equal to 12. Since 12 is greater than 8 search onright side
part of 8. 12 isequal to right side part middle. So element is found.
Algorithm:
Step 1: Read sorted
elementsin array
Step 2: Read the
element to search
Step 3: Compare the element to sear and middle element in array. If match is found the search success.
Step 4: If match is not found check the search element with middle element. If search element is
greater thanthe middle element then search on right side of middle element otherwise search on left.
Step 5: This processis repeated for all elementsin array. If no match is found upto the end then the
search isnot success.
Program: #include <stdio.h>int main()
{
inti, first, last, middle, n, s, a[100]; printf("Enter number of e ements:\n");scanf("%d",&n);
printf("Enter elementsin ascending order:\n");for (i = 0; i <n; i++)
scanf("%d",& &[i]);
printf("Enter an element to search:\n");scanf("%d", &9);
first=0; last=n-1;
middle = (first+last)/2;while (first <= last)

{
if(s==a[middle])
printf("Element isfound at index: %d",middle);break;

}
elseif(s>amiddl€])first = middle + 1; else if(s<a[middl€])last = middle - 1,
middle = (first + last)/2;

if (first > last)
printf("Element is not found");return O;
}
7.3 FIBONACCI SEARCH:
+»+ Fibonacci Search uses Fibonacci numbers to search an element in a sorted array.
¢ Fibonacci numbersare: 0,1,1,2,3,5,8...
+¢ Fibonacci series generates the subsequent number by adding two previous numbers
Example: Let the elements are given by

10, 22, 35, 40, 45, 50, 80, 82, 85, 90,100

arr[] = {10, 22, 35, 40, 45, 50, 80, 82, 85, 90,100}

+¢+ Fibonacci No’s are: 0,1,1,2,3,5,8,13,21,... Target element x is85. Length of array n= 11
+¢* Find the smallest Fibonacci number greater than or equal to 11is 13.

«» Asperour step, a= 5, b =8, and ¢ = a+b=13.

s Let offset=-1

% First Compute i= min(offset+a, n-1)

¢ If x is greater than the element, move the three Fibonacci variables one Fibonacci down. Reset
offset to index. Else If x is less than the element, move the three Fibonacci variables two
Fibonacci down. Else (orwhen b=1) returni — Thisis the case Element Found

¢ If element not found return -1

% These steps are shown in the following table

w | b | o (offEer | mindoffser | arrfi) Consequence
. . . . m-1)
4. 8 [(3 =1 4 /45 hiocwe one down, reset oflset
4| & B i i az hione cne down, neset oflset
2] 3 ['3 T B 80 Mowe twodown
1 . 1 . 2 ¥ . B a5 Returm i
Algorithm:

Let arr[0..n-1] be theinput array and element to be searched be x.

Step 1: Find the smallest Fibonacci Number greater than or equal to n. Let this number be c.
L et the twoFibonacci numbers preceding it be a,b.

Step 2: While the array has elements to be inspected such as:

Step-2.1: Compute i= min(offset+a, n-1)

Step-2.2: If x is greater than the element, move the three Fibonacci variables one Fibonacci down.
Reset offsetto index.

Step-2.3: Else If x isless than the e ement, move the three Fibonacci variables two
Fibonacci downStep-2.4: Else (or when b=1) returni — Thisis the case Element Found

Step-3: If element not found return -1

Program: #include <stdio.h>int min(int X, int y)
{

return (X<=y)?Xx:y;
int search(int arr[], int x, int n)

inta=0;inth=1;
intc=a+ b;while(c<n)
{

a=bb=c;

c =a+b;

}

int offset = -1;while (c > 1)
{

int i = min(offset+a, n-1);
if (x>arr[i])

c=bb=2g
a=c-b; offset=i;

elseif (x<art[i])

a
b-&
c-b;

-~ T O

elsereturni;

}

return -1;

}

int main()

{

int arr[] ={10, 22, 35, 40, 45, 50, 80, 82, 85, 90, 100} ;
int n = sizeof (arr)/sizeof (arr[0]);int X,s;

printf("Enter an element to search:\n");scanf("%d",&X);
s=search(arr, X, n);if(s==-1)

printf("Element is not found");else

printf("Element is Found at index: %d", s);return O;

}

7.4 SORTING

» Sorting isaprocess of placing a list of elements from the collection of datain some order.

» Itisnothing but storage of datain sorted order. Sorting can be done in ascending and
descending order. Itarranges the data in a sequence which makes searching easier

7.5INSERTION SORT:
+* Inthis sorting technique first elements are stored in an array.
¢+ The process of sorting starts with second element.
+» Firgt the second element is picked and is placed in specified order Next third element is picked
and is placedin specified order. Similarly the fourth, fifth, ...n"™ element .is placed in specified
order.
¢ Findly we get the sorting elements.
Example
Let usconsider the elements: 12, 3,1, 5, 8
7.6 Checking second element of array with element before it and inserting it in proper position.
Inthis case 3isinserted in position of 12
2 3 1 5 8
| S
7.7 Checking third element of array with elements before it and inserting it in proper position. In
thiscaselis
inserted in position of 3

—_

(1121 [5]]8
]

7.8 Checking fourth element of array with e ements before it and inserting it in proper position. In
thiscase 5

isinserted in position of 12

v Y Y |

1 31|12 5 8

79 Checking fifth element of array with elements beforeit and inserting it in proper position. In
thiscase 8 is

inserted in position of 12

v Y Y v I

1 3 5|12 8

t |
7.10 Sorted array in ascending order

1 3 5 8 12

Algorithm:
Step 1: Check second element of array with element before it and insert it in proper

position. Step 2: Checking third element of array with element before it and inserting
it in proper position.Step 3: Repeat thistill all elements are checked.
Step 4: Stop
Program: #include<stdio.h>int main()
{
int n,a[30] key,i j;
printf("Enter total
elements:\n");
scanf("%d",&n);
printf (" Enter
elements:\n"
);
for(i=0;i<n;i
++)
scanf("%d",
&di]);
for(i=1;i<n;i
++)
L
I=h
while(>0 && a[j]<alj-1])
{
temp=a[j]
a[j]=alj-

1; alj-
1]=temp

jou
}

printf("After
sorting
is\n");
for(i=0;i<n;i
++)

print
f("
%d
"a

[i)
ret
urn
0;

}

7.6 SELECTION SORT:
Selection sort is an agorithm that selects the smallest element from an unsorted list in each
iteration andplaces that el ement at the beginning of the unsorted list.
Example:
The following figure showsthe first pass of a selection sort.
First pass

54| 26| 93] 17] 77| 31| absig = hin
26| 54 93] 17] 77] 31| 448519 2 hin

| 26| 54| 93] 17] 77/ 31| 44dssigh 26 nin

(17| 54 93] 26| 77] 31| 44dssigh 57 fin

117 | 54| 93] 26 77| 31/ 4adssigh 57 in

(17| 54] 93] 26| 7] 31 4adsdgh 57 hin
(17| 54 93] 26| 77 31] 44dssigh 57 fin
(10 [54] 93] 26| 77] 31] 44dstigh 50 hin

15 [54] 93] 26| 77| 31]4a4] 17|10

Exchange 10 and 5after first pass
In first passthefirst eement is compared with all remaining elements and exchange element if
first one isgreater than second so that the smallest value isin first place. Leave this el ement.
In second pass compare second element to all elements and put the next smallest value, in
second place.Leave this element. This process is repeated till all the elements are placed.
Now we get the sorted elements.

Algorithm:
Step 1 — Set minto thefirst location.
Step 2 — Search the minimum element in the array.
Step 3 — swap the first location with the minimum valuein
the array.Step 4 — assign the second element as min.
Step 5 — Repeat the process until we get a sorted array.
Program: #include<stdio.h>int main()
{
Int
n,i,j,temp,a 20],m
in; printf("Enter
total
elements\n");
scanf("%d",&n);

printf(" Enter
eements\n")

1"or(i=0;i<n;i
++)
scanf("%d",
&di]);
for(i=0;i<n;i
++)

t

min=i;
for(j=i+1
J<nj+t)

{

if(aj] <
a[min])

min=j;

}
temp=
ail;
ai]=
ami

nj;

ami
nj=t
emp;

printf(" After
sorting
is\n");
for(i=0;i<n;i
++)

print
f("
%d
"a

o)

ret
urn
0;

}

7.7 EXCHANGE SORT:
The exchange sort isamost similar as the bubble sort. The exchange sort compares each element
of an arrayand swap those elements that are not in their proper position,
just like abubble sort does. The only difference between the two sorting algorithms is the manner in
whichthey compare the elements..

7.8 BUBBLE SORT:

» Bubble Sort is based on the idea of repeatedly comparing pairs of adjacent € ements and then
swapping theirpositions if they exist in the wrong order.

Example:

» Thefollowing figure showsthe first pass of abubble sort. In first passthe first element is
compared withsecond and exchange element if first one is greater than second.

» Similarly second element is compared with third and exchange element if second one is greater
than third.

» Repeat this so that at the end of first passthelargest valueisin last place. Leave this element.

First pass

54| 26| 93| 17| 77| 31| 44| 55| 20

26| 54| 93| 17| 77| 31| 44| 55| 20

26| 54| 93| 17| 77| 31| 44| 55| 20

26| 54| 17| 93| 77| 31| 44| 55| 20

|26 | 54| 17] 77| 31| 44| 55| 20| 93]

126 | 54| 17| 77| 93] 31[44| 55] 20

26| 54| 17| 77| 31| 93| 44| 55| 20
26 | 54| 17| 77| 31| 44| 93| 55| 20

26| 54| 17| 77| 31| 44| 55| 93| 20

Step 1: Thefirst element is compared with second and exchange element if first oneis greater than
second
Step 2: Similarly second element is compared with third and exchange element if second oneis
greater than thirdStep 3: Repeat this so that at the end the largest value isin last place
Step 4: Likewise sorting is repeated for al elements.
Program: #include<stdio.h>int main()
{
int n,temp,i,j,a[20];
printf("Enter total numbers of
elements:\n");scanf("%d",&n);
printf (" Enter
elements\n");
for(i=0;i<n;i++)
scanf("%d",& di]
);
for(i=0;i<n;i++)
{
for(j=0;j<n-1;j++)
{

i{f(a[j]>a[j+1])

temp=a[j];
aj]=alj+1];
a[j+1]=temp;

}
}
}
printf(" After sorting elements
are\n");for(i=0;i<n;i++)
printf("

%d" (i

D;

return

0;
}

7.9 QUICK SORT:

» Quick Sort isalso one of the exchange sort.

» Inaquick sort wetake pivot element, then we place all the smaller elements are on one side
of pivot, andgreater elements are on other side of pivot.

» After partitioning we have pivot in the final position. After repeatedly partitioning, we
get the sortedel ements.

Example:

» Letus
consider the
elements:
35,50,15,25,8
0,20,90,45

» Let usconsider thefirst element 35 aspivot or i. The last element 45 asj
B 20 15 25 B0 20 80 45

atoe lat or

» 50 whichisgreater than pivot taken asi and the 20 smaller than pivot taken as

@5 50 15 25 80 20 g 45
I
j

]

» Nowiislessthan | so swapthe elementsini and j.

@) 20 15 25 80 50 90 45

» Find greater than 35 (80)is i and less than 35(25) isj|
@) 20 15 25 g0 50 90 45

I i
» Nowiisnotlessthanj. swap 35 and j so 35 becomesat j place.

25 20 15|(?75}|au 50 90 45
repeat ! repeat
{a,ﬁrﬁt.j-'l :' I {E,i‘l"l ,IH 51"]

» Now 35isin correct position.
» Onleft sideand right side of 35 repeat the process. Consider on left side of 35

23 20 15

» Let 25aspivot. The lesser of 25 that is 15 asj and thereisno greater. So bring i after ji >j so
swap pivotand |

l%-’i) 20 1f
|

pivot

» After swapping
15 20 25

» Now theléft part is sorted. Consider right part

80 o0 90 45

» Here80 aspivot, Greater thanto 80 isi and lessthanto 80 isj

80) 50 90 45

l ‘o

pivot i i

» Hereiislessthanj so swapiand j e ements.

@;} 50 45 ap

» firstfind greater to 80isi and lesser to 80isj.i>j soswap 80 andj.

@5{145
il

] I

» After swapping. The sorting el ements are given by

45 a0 B0 a§o

» Now joinall left part j and right part j to get the sorted elements

13 20 25 35 45 50 80 90

Algorithm:
Step 1: Let thefirst element taken as pivot

Step 2: Find lesser of pivot say i and greater of pivot say j.
Step 3: If i islessthan j theni and j elements are swapped. Repeat step 2
Step 4: Repeat
step 3until i >
jNow swap
and pivot
Step 5: Now the pivot element isfinal position.
Repeat the above procedure for left and right side of pivot elements until all elements are sorted
Step 6: Stop

Program: #include<stdio.>
void quicksort(int a[25],int first,int last)

{

inti,j,
pivot,
temp;
if(firs
t<last
)

{

pivot=
first;
i=fir
st

j=las
t;
whil
i<

{)

while(gi]<g[pivot]& &i<=last)i++;

while(dj]>a[pivot])j--;
if(i<j)

{

temp=g{i];a[i]=aj];
a[j]=temp;

}

}

temp=g[pivot];
alpivot]=a[j];
alj]=temp;
quicksort(afirst
i-1);
quicksort(a,j+1,
|ast);

}

}

int main()

{

inti, n, a25];

printf("Enter total aof
elements\n");
scanf("%d",&n);

printf (" Enter
elements\n");
for(i=0;i<n;i+
+)
scanf("%d",&
ai]);

quicksort(a,0,n-1);

printf("The Sorted
dementsare\n");
for(i=0;i<n;i++)

printf(

%d",

ai]);
retur
no;

}

iv) Di ion rR

> Radlx sortisone of the sortl ng aIgonthms used to sort alist of integer numbers in ascending or
descendingorder.

» Inradix sort algorithm, alist of integer numbers will be sorted based on the digits of
individual numbers.Sorting is performed from least significant digit to the most significant digit

» Radix sort algorithm requires the number of passes which are equal to the number of digits
present in thelargest number among the list of numbers.

» For example, if the largest number isa 3 digit number then that list is sorted with 3 passes.

> Example:
Consider the following It of unsorted Integer numbers

82, 901, 100, 12, 150, 77, 55 & 23

Step 1 - Define 10 queues each represents a bucket for digits from 0 to 9.

N[N{N] NN NN NN

Queue-0 Queéue-1 Queue-2 Queue-3 Queus-4 Quaus-S Queue-& Queue-7 Queéus-8 Queue-9

Step 2 - Insert all the numbers of the list into respective queue based on the
Least significant digit (once placed digit) of every number.

82, 901, 100, 12, 150, 77, 55 & 23

150 12
100 901 82 23 77

Q Q Q 2 QueuQ 3 Q 5 Q Queue-7 Queue-8 Queue-9

Group all the numbers from queue-0 to queue-9 inthe order they have inserted &
consider the list for next step as input list.

100, 150, 901, 82, 12, 23, 55 & 77

Step 3 - Insert all the numbers of the list into respective queue based on the
next Least significant digit (Tens placed digit) of every number.

100, 150, 901, , 23,55 & 77

EULUUEULILL

Queue-0 Queue-l Queue-2 Quewe-3 Quesue4 QueueS Queue§ Queue7 Queued Queus-9

Group all the numbers from queue-0 to queue-9 inthe order they have inserted &
consider the list for next step as input list.

100, 901, 12, 23, 150, 55, 77 & 82

Step 4 - Insert all the numbers of the list into respective queue based on the
next Leasdt significant digit (Hundres placed digit) of every number.

100, 901, 12, 23, 150, 55, 77 & 82

AUUUULULL

Queue-0 Queus-1 Queue-2 Queue3 Quewe-4 Queue-5S Queue§ Queues7 Queue8 Queue9

Group all the numbers from queue-0 to queue-9 inthe order they have inserted &
consider the list for next step as input list.

12, 23, 55, 77, 82, 100, 150, 901

List got sorted in the incresing order.

Algorithm
Step 1 - Define 10 queues each representing a bucket for each digit from 0 to 9.

Step 2 - Consider the least significant digit of each number in thelist which isto
be sorted.Step 3 - Insert each number into their respective queue based on the
least significant digit.

Step 4 - Group all the numbers from queue 0 to queue 9 in the order they have inserted into their
respectivequeues.

Step 5 - Repeat from step 3 based on the next least significant digit.

Step 6 - Repeat from step 2 until all the numbers are grouped based on the most significant digit.

Program:
#include<stdio.h>
int getMax(int arr[], int n)

int

max

arr[Q]

Ainti;
for(i=1;i<n;i++)

if (arr[i] >
max)max =
arr[i];

}

return max;

}

void countSort(int arr[], int n, int exp)
{
int output[n]; //
output arrayint i,
count[10] ={ O
b
/' Store count of occurrences
incount[Jfor (i =0;i<n;
i++)
count[(arr[i] / exp)
% 10]++;for (i =
1, i <10; i++)
count[i] +=
countf[i - 1];
// Build the
output array
for(i=n-1,
i>=0;i--)
{
output[count[(arr[i] / exp) % 10] - 1] =
arr[i];count[(arr[i] / exp) % 10]--;
}
for(i=0;i<
n; i++)
arr[i] =
output[i];

// The main function to that sorts arr[] of sizen
using Radix Sortvoid radixsort(int &], int n)

{

int max =
getMax(a,
n);inti;
for (i=1, max/i>
0;i*=10)
countSort(a, n, i);
}
int main()
{
int g] ={ 170, 45, 75, 90, 802, 24, 2,66 } ;
inti;
int n=sizeof(a) /
sizeof(a[q]);
radixsort(a, n);
for (i=0;
i<n;
i++)
printf("
%d ",
ai]);
return O; }

7.11 Merging or Merge Sort:

» Itdividesinput array into two halves, calsitself for the two halves and then sorted and

merged that twohalves.
Example

» For example consider the array of elements: 38, 27, 43, 3, 9, 82, 10

» Now the array isrecursively divided into two halvestill the size becomes one whichis

shown in thefollowing figure.

s 7 k3 | 3| 9 &2 o
N
38 [27]43] 3 [9 8210
. N
38 [27] [43] 3 9 |82 10
S T /A /
38 | [27] [43]] 3 9| [s2 10

»___Once the size becomes one, the merge process comes into action and

array till thecomplete array is merged

|3£§||27||43||3| 19| [82] |10}
|27 38| |3 | 43] |9 [82] [10]
\ , a
3 |27 3843 9 [10] 82
\ A !
3 ohg by Tag Iz Too
Algorithm:

Step 1 — If itisonly one element in thelist then it is aready sorted.

arts merging with sorted

Step 2 — Divide the list recursively into two halvestill the size becomes one.
Step 3 — Once the size becomes 1, the merge process comes into action and starts merging with
sorted array till thecomplete array is merged

imezrgessorifsplitling]
15 | 24 B 3 5 10 1 | 20|16
lowe mict={low +Tiigh)/2 high
r.______.-"" h"‘-_&h.‘
16| 24 a8 3 5 10 i 20 18 |
low micl vl +14 g

masrge|sorting and merging]

[olel=]

1
i=low e fmid j.=nﬂ+1j,/ j= high
T -
x“ah .-__,..-
oy ‘.-' -
1 3 B A 10 |15 | 16 zuézq |

Program:
#include<stdio.h>

int n,a[30],i,j,k,temp[30];

void merge(int low,int mid,int high)
{

i=low; j=mid+1;k=low;
while((i<=mid) && (j<=high))

{

if(@i]>=a[j])
temp[k++]=a[j++
J;else
temp[k++]=ai++
I;

}

while(i<=mid)
temp[k++]=g[i++];
while(j<=high)
temp[k++]=a[j++];
for(i=low;i<=high;i++)
a[i]=templi];

void mergesort(int low,int high)
{
int

mid;

if(lo

w!=h

igh)

{

mid=((low+high)/2);
mergesort(low,mid);
mergesort(mid+1,hig
h);
merge(low,mid,high
)i

}

}

int main()

{

printf (" Enter total
elements\n");
scanf("%d",&n);

printf(" Enter
elements\n");
for(i=0;i<n;i++)
scanf("%d",&a[i]);
mergesort(0,n-1);
printf("After
sortingis\n");
for(i=0;i<n;i++)

printf("
%d" all]);
return O;

}

Time Complexity:

» O(n"2) meansthat for every insert, it takes n*n operations. i.e. 1 operation for 1 item, 4

operations for 2items, 9 operations for 3 items.

Comparison of Sorting Algorithms

Algorithm |Data Structure Time Complexity
Best | Average | Worst
Qui ck sort Amay [O(nlog(m)) [O(nlog(m)[O(m2)
Mergesort Armay O(n log(n)) |O(n log(n)) |O(n log(n))
Bubble Sort Amay O(n) O(n"2) O(n'2)
[nsertion Sort Armay O(n) O(n"2) O(n"2)
SeectSort Amay O(n"2) O(n"2) O(n"2)

Complexity of Radix Sort:

» Radix sort is anon-comparative algorithm, it has advantages over comparative sorting algorithms.

» For theradix sort that uses counting sort as an intermediate stable sort, the time complexity is
O(d(n+k)).

» Here, disthe number cycle and O(n+k) is the time complexity of counting sort

» Thus, radix sort has linear time

» complexity which is better than

» O(nlog n) of comparative sorting algorithms.

» If wetake very large digit numbers or the number of other bases like 32-bit and

» 64-bit numbersthen it can performin linear time however the intermediate sort takes large space.

» Thismakesradix sort space inefficient.

» Thisisthereason why thissort is not used in software libraries.

Best case Worst case and Average Case of Radix sort -

>
>

Radix sort complexity is O(kn) for n keys which are integers of word size k.
For all there casestimei.e best , worst and average time complexity is O(kn)

