

The Motto of the University

(SEWA)

SKILL ENHANCEMENT EMPLOYABILITY WISDOM ACCESSIBILITY

M.Sc. (Computer Science)
Course Name: Web Programming

Course Code: MSCS-3-01T

ADDRESS: C/28, THE LOWER MALL, PATIALA-147001

WEBSITE: www.psou.ac.in

S
E

L
F

-I
N

S
T

R
U

C
T

IO
N

A
L

 S
T

U
D

Y
 M

A
T

E
R

IA
L

 F
O

R
 J

G
N

D
 P

S
O

U
,
A

L
L

 C
O

P
Y

R
IG

H
T

S
 W

IT
H

 J
G

N
D

 P
S

O
U

,
P

A
T

IA
L

A

JAGAT GURU NANAK DEV

PUNJAB STATE OPEN UNIVERSITY, PATIALA
(Established by Act No. 19 of 2019 of the Legislature of State of Punjab)

http://www.psou.ac.in/

 JAGAT GURU NANAK DEV
 PUNJAB STATE OPEN UNIVERSITY PATIALA

 (Established by Act No.19 of 2019 of Legislature of the State of Punjab)

Faculty of School of Science and Emerging Technologies:

Dr. Baljit Singh Khera (Head)

Professor, School of Sciences and Emerging Technologies

Jagat Guru Nanak Dev Punjab State Open University, Patiala

Dr. Kanwalvir Singh Dhindsa

Professor, School of Sciences and Emerging Technologies

Jagat Guru Nanak Dev Punjab State Open University, Patiala

Dr. Amitoj Singh

Associate Professor, School of Sciences and Emerging Technologies

Jagat Guru Nanak Dev Punjab State Open University, Patiala

Dr. Karan Sukhija

Assistant Professor, School of Sciences and Emerging Technologies

Jagat Guru Nanak Dev Punjab State Open University, Patiala

Dr. Monika Pathak

Assistant Professor, School of Sciences and Emerging Technologies

Jagat Guru Nanak Dev Punjab State Open University, Patiala

Dr. Gaurav Dhiman

Assistant Professor, School of Sciences and Emerging Technologies

Jagat Guru Nanak Dev Punjab State Open University, Patiala

Faculty of School of Business Management & Commerce:

Dr. Pooja Aggarwal

Assistant Professor, School of Business & Commerce

Jagat Guru Nanak Dev Punjab State Open University, Patiala

Faculty of School of Social Sciences and Liberal Arts:

Dr. Pinky Sra

Assistant Professor, School of Social Sciences and Liberal Arts

Jagat Guru Nanak Dev Punjab State Open University, Patiala

 JAGAT GURU NANAK DEV
 PUNJAB STATE OPEN UNIVERSITY PATIALA

 (Established by Act No.19 of 2019 of Legislature of the State of Punjab)

PROGRAMME COORDINATOR

Dr. Karan Sukhija (Assistant Professor)

School of Sciences and Emerging Technologies

JGND PSOU, Patiala

COURSE COORDINATOR AND EDITOR:

Dr. Gaurav Dhiman (Assistant Professor)

School of Sciences and Emerging Technologies

JGND PSOU, Patiala

COURSE OUTCOMES:

 Demonstrate mastery in Java programming for web development.

 Familiarity with Java programming for efficient and modular web application

development.

 Ability to integrate Java applications with databases using Java Database Connectivity

(JDBC) for effective data management.

 Design and implement of web services in Java

 Understand and implement security measures specific to Java web development,

including authentication, authorization, and protection against common vulnerabilities.

 JAGAT GURU NANAK DEV
 PUNJAB STATE OPEN UNIVERSITY PATIALA

 (Established by Act No.19 of 2019 of Legislature of the State of Punjab)

PREFACE

 Jagat Guru Nanak Dev Punjab State Open University, Patiala was established in

Decembas 2019 by Act 19 of the Legislature of State of Punjab. It is the first and only Open

Universit of the State, entrusted with the responsibility of making higher education accessible

to all especially to those sections of society who do not have the means, time or opportunity

to pursue regular education.

 In keeping with the nature of an Open University, this University provides a flexible

education system to suit every need. The time given to complete a programme is double the

duration of a regular mode programme. Well-designed study material has been prepared in

consultation with experts in their respective fields.

 The University offers programmes which have been designed to provide relevant,

skill-based and employability-enhancing education. The study material provided in this

booklet is self instructional, with self-assessment exercises, and recommendations for further

readings. The syllabus has been divided in sections, and provided as units for simplification.

 The Learner Support Centres/Study Centres are located in the Government and

Government aided colleges of Punjab, to enable students to make use of reading facilities,

and for curriculum-based counselling and practicals. We, at the University, welcome you to

be a part of this institution of knowledge.

Prof. G. S. Batra,

 Dean Academic Affairs

M.Sc. (Computer Science)

Semester-3 (Syllabus)

MSCS-3-01T: Web Programming

Total Marks: 100

External Marks: 70

Internal Marks: 30

Credits: 4

Pass Percentage: 40%

SECTION-A
Unit 1: Java and the Internet: The Java programming language and its characteristics; Java

development kit, Java run- time environment; Java compiler.

Unit II: Fundamentals of Java: Java Vs. C++, Byte Code, Java Virtual Machine, constants,

variables, data types, operators, expressions, control structures, defining class, creating objects,

accessing class members, constructors, Garbage Collection, method overloading.

Unit III: Inheritance: Different types of Inheritance, member access, using super keyword to call

super class constructors, creating a multilevel hierarchy, method overriding, dynamic method

dispatch, using abstract classes, using Final keyword.

Unit IV: I/O Basics: streams, the predefined streams; Reading console Input, Writing console

Output. Arrays and Strings: One-dimensional and two-dimensional Arrays, String Handling using

String and String Buffer class, String Functions.

SECTION-B
Unit V: Packages: Types of packages, defining a package, importing packages, Access protection

Interfaces: Defining an Interface, Implementing Interfaces, Variables in Interfaces, achieving multiple

inheritance using interfaces, Interface and Abstract classes.

Unit VI: Exception Handling: Java Exception handling model, Types of exception, using Try and

catch, Multiple Try and Catch clauses, Nested Try statements, finally block, user defined exceptions.

Unit VII: Multi-threaded Programming: The Java Thread model, the Thread class and Runnable

interface, creating a Thread using Runnable Interface and extending Thread, Creating Multiple

Threads, Thread Priorities, Synchronizations: Methods, Statements, Inter Thread Communication,

Deadlock, Suspending, Resuming and Stopping Threads.

Unit VIII: Applet Programming: Introduction, Types of applet, Life Cycle, incorporating an applet

into web page using Applet Tag, running applets, using Graphics class and its methods to draw lines,

rectangles, circles, ellipses, arcs and polygons

M.Sc. (Computer Science)

SEMESTER-3

COURSE: Web Programming
UNIT 1: JAVA AND THE INTERNET

1.1 The Java programming language and its characteristics

1.2 Java development kit

1.3 Java run- time environment

1.4 Java compiler

1.1 The Java Programming Language and Its Characteristics

The Java programming language, initially developed by Sun Microsystems in the mid-1990s, has

emerged as one of the most widely used and influential programming languages in the world. Known

for its platform independence, robustness, and versatility, Java has become a staple in various

domains, from web development to enterprise applications, mobile development, and embedded

systems. This article provides an in-depth exploration of the Java programming language, its key

characteristics, and its impact on the software development landscape.

Historical Overview

Java's journey began in 1991 when a team at Sun Microsystems, led by James Gosling, started

developing a language for programming household appliances. However, the project evolved, and by

1995, Java had transformed into a general-purpose programming language. One of its defining

features was the "Write Once, Run Anywhere" (WORA) principle, emphasizing its cross-platform

capabilities.

Key Characteristics of Java

1. Platform Independence

Java's platform independence is a fundamental characteristic that sets it apart. Java code is compiled

into an intermediate form called bytecode, which can run on any device equipped with a Java Virtual

Machine (JVM). This "write once, run anywhere" capability has been a key driver of Java's

widespread adoption.

2. Object-Oriented Programming

Java is an object-oriented programming (OOP) language, meaning it revolves around the concept of

objects. Encapsulation, inheritance, and polymorphism are core principles of Java's OOP paradigm.

This approach promotes modular and reusable code, enhancing software maintainability and

scalability.

3. Robust and Secure

Java's design includes features aimed at ensuring robustness and security. Memory management is

handled by the Java Virtual Machine, which includes garbage collection to automatically reclaim

unused memory. Additionally, Java enforces strong type checking during compilation, reducing the

likelihood of runtime errors.

4. Multithreading

Java provides built-in support for multithreading, allowing developers to write concurrent, scalable,

and responsive applications. Multithreading is crucial for tasks such as handling user interfaces,

background processing, and managing concurrent connections in networked applications.

5. Distributed Computing

Java's architecture supports distributed computing through its Remote Method Invocation (RMI)

mechanism and Java's extensive set of APIs. This makes it well-suited for developing networked and

distributed applications, a key requirement in the modern computing landscape.

6. Dynamic and Extensible

Java's dynamic nature allows for dynamic loading of classes, enabling applications to adapt and

extend their functionality at runtime. This extensibility is particularly valuable in scenarios where new

functionality needs to be added without restarting the entire application.

7. Rich Standard Library

Java comes with a comprehensive standard library that provides a wide array of classes and packages

for common programming tasks. This includes utilities for networking, file I/O, data structures, and

more. The rich standard library accelerates development by offering pre-built components and

reducing the need for developers to reinvent the wheel.

8. Community Support and Ecosystem

Java benefits from a vibrant and expansive community of developers. The Java Community Process

(JCP) facilitates collaboration and the evolution of the language through the creation of Java

Specification Requests (JSRs). Additionally, the Java ecosystem includes a plethora of frameworks,

tools, and third-party libraries that enhance productivity and enable developers to tackle a variety of

challenges.

9. Versatility: From Desktop to Mobile to the Cloud

Java's versatility is evident in its ability to power a diverse range of applications. From desktop

applications using JavaFX to mobile applications on the Android platform to cloud-based

microservices and server-side applications, Java's adaptability makes it suitable for a wide spectrum

of use cases.

Java Language Components

1. Java Virtual Machine (JVM)

At the heart of Java's platform independence is the JVM. It interprets and executes Java bytecode,

serving as an abstraction layer between the compiled Java code and the underlying hardware.

Different implementations of the JVM exist, catering to various platforms.

2. Java Development Kit (JDK) and Java Runtime Environment (JRE)

The JDK includes the tools needed for Java development, such as the compiler and debugger, along

with the JRE. The JRE, on the other hand, contains the JVM and libraries necessary for running Java

applications. For end-users, the JRE is sufficient, while developers require the full JDK for coding

and compiling.

3. Java Standard Edition (SE) and Java Enterprise Edition (EE)

Java SE is the standard edition, encompassing the core features of the language. Java EE, now known

as Jakarta EE, extends Java SE to provide additional APIs for enterprise-level applications. These

include features for web services, messaging, and persistence.

4. JavaFX

JavaFX is a platform for creating rich internet applications (RIAs). It provides a set of APIs for

creating graphical user interfaces (GUIs) and is used for developing desktop and mobile applications.

JavaFX supports multimedia, 2D and 3D graphics, and has built-in support for web standards.

Java Development Process

1. Writing Java Code

The development process typically begins with writing Java code using an integrated development

environment (IDE) or a text editor. Java code is saved in files with a `.java` extension.

2. Compilation

The Java compiler (`javac`) translates the human-readable Java code into bytecode. This bytecode is a

set of instructions for the JVM and is stored in files with a `.class` extension.

3. Bytecode Execution

The JVM executes the bytecode. This step is where the platform independence of Java becomes

evident. As long as a device has a compatible JVM, it can run Java bytecode, regardless of the

underlying hardware and operating system.

4. Garbage Collection

Java's automatic garbage collection mechanism manages memory by identifying and reclaiming

unused objects. This feature alleviates developers from manual memory management concerns,

reducing the risk of memory leaks.

Java in Modern Development

1. Mobile Development with Android

Java has played a pivotal role in mobile app development, particularly on the Android platform.

Android applications are primarily developed using Java (or Kotlin). The portability of Java code has

enabled developers to create applications that run on a myriad of Android devices seamlessly.

2. Web Development with Spring Boot

Java's presence in web development has been bolstered by frameworks like Spring and Spring Boot.

Spring Boot simplifies the development of production-ready applications, providing a convention-

over-configuration approach and a range of features for building robust and scalable web services.

3. Microservices Architecture

Java has adapted well to the microservices architecture, where applications are developed as a

collection of loosely coupled services. Frameworks like Spring Cloud facilitate the creation and

management of distributed systems, supporting developers in building scalable and resilient

microservices.

4. Cloud-Native Development

As organizations embrace cloud computing, Java has evolved to meet the demands of cloud-native

development. Containers and orchestration tools like Docker and Kubernetes are well-supported in the

Java ecosystem, enabling seamless deployment and scaling of Java applications in cloud

environments.

Challenges and Future Trends

1. Competition from New Languages

While Java remains a powerhouse in the software development landscape, it faces competition from

newer languages like Kotlin, which is now the preferred language for Android development, and

languages like Rust and Swift, which are gaining traction in specific domains.

2. Security Concerns

Despite its emphasis on security, Java has faced challenges, including security vulnerabilities.

Ongoing efforts within the community and the adoption of best practices help mitigate these concerns,

but security remains a key area of focus.

3. Containerization and Serverless Computing

Java continues to adapt to emerging trends in containerization and serverless computing. The

lightweight and modular features introduced in recent Java versions aim to optimize Java applications

for these modern deployment models.

4. Project Loom and Fiber

Project Loom, an ongoing effort in the Java community, aims to simplify concurrent programming

using fibers, lightweight threads that can be used to write highly concurrent applications more

efficiently. This project represents a significant step toward enhancing Java's capabilities in the era of

multi-core processors.

Conclusion

The Java programming language has withstood the test of time and remains a cornerstone in the world

of software development. Its platform independence, robustness, and adaptability have contributed to

its enduring popularity. As technology continues to evolve, Java's ability to embrace new trends and

address emerging challenges will determine its continued relevance in the dynamic landscape of

programming languages. The Java community, with its commitment to innovation and collaboration,

plays a crucial role in shaping the language's future. Whether in mobile development, web services,

microservices architecture, or cloud-native applications, Java continues to be a versatile and powerful

choice for developers worldwide.

1.2 Java Development Kit (JDK): Unveiling the Toolkit for Java

Developers

Introduction

The Java Development Kit (JDK) is a comprehensive software development kit that provides the

necessary tools, executables, and binaries for Java application development. Developed by Oracle

Corporation, the JDK facilitates the entire software development life cycle, from writing and

compiling code to debugging and testing. In this exploration, we delve into the components, features,

and significance of the Java Development Kit.

Evolution of the JDK

The history of the JDK is intertwined with the evolution of the Java programming language. The first

version of Java, released in 1995, included a basic set of tools for development. As Java gained

popularity and underwent enhancements, the need for a more robust and feature-rich toolkit became

evident. Subsequent versions of the JDK have introduced improvements, additional tools, and support

for new features in the Java language.

Components of the JDK

1. Java Compiler (`javac`)

The Java compiler is a fundamental component of the JDK, responsible for translating human-

readable Java source code into bytecode. This intermediate bytecode is platform-independent and can

be executed by the Java Virtual Machine (JVM). The compiler ensures that the code adheres to the

syntax and rules of the Java programming language.

2. Java Virtual Machine (JVM)

At the heart of Java's platform independence is the JVM. It interprets and executes the compiled Java

bytecode, providing a runtime environment that abstracts the underlying hardware and operating

system. Different implementations of the JVM exist for various platforms, ensuring that Java

applications can run consistently across diverse environments.

3. Java Runtime Environment (JRE)

The JRE is a subset of the JDK and includes the JVM along with essential libraries and components

required to run Java applications. For end-users who only need to execute Java applications, the JRE

is sufficient. However, developers require the full JDK to compile and build applications.

4. Java Development Kit (JDK) Tools

The JDK includes a rich set of tools that streamline the development process. Some key tools are:

- Java Archive (JAR) Tool (`jar`): This tool is used to package Java applications and libraries into

JAR files. JAR files are a standard way to bundle and distribute Java code.

- Java Documentation Generator (`javadoc`): Developers can use this tool to automatically generate

documentation from their source code comments. The resulting documentation is in HTML format

and serves as a reference for other developers using the code.

- Java Debugger (`jdb`): The debugger allows developers to identify and fix issues in their code by

providing features for setting breakpoints, inspecting variables, and stepping through code execution.

- Java Applet Viewer (`appletviewer`): While applets are less prevalent today, this tool was

historically used to test and run Java applets outside of a web browser.

- JavaFX Packager: With the inclusion of JavaFX in the JDK, tools for packaging JavaFX

applications for deployment are also provided.

5. JavaFX

JavaFX, included as part of the JDK, is a platform for creating rich internet applications (RIAs). It

provides a set of APIs for building interactive and visually appealing user interfaces. JavaFX supports

features such as 2D and 3D graphics, multimedia, and integration with web standards. The inclusion

of JavaFX in the JDK highlights Oracle's commitment to providing a comprehensive toolkit for

modern Java development.

6. Java Mission Control and Java Flight Recorder

Java Mission Control (JMC) and Java Flight Recorder (JFR) are tools for monitoring, managing, and

profiling Java applications. They provide insights into application performance, resource

consumption, and other runtime characteristics. JFR, in particular, allows developers to record and

analyze detailed information about the application's behavior, helping identify performance

bottlenecks and optimize code.

Installing and Configuring the JDK

1. Download and Installation

To use the JDK, developers need to download and install it on their development machines. Oracle,

the primary maintainer of the JDK, provides official distributions for various operating systems.

Additionally, alternative distributions such as OpenJDK, AdoptOpenJDK, and Amazon Corretto are

available, offering open-source implementations of the JDK.

2. Environment Variables

After installation, configuring the system's environment variables is essential to ensure that the

operating system recognizes the JDK's executable files. Key environment variables include

`JAVA_HOME` (pointing to the JDK installation directory) and `PATH` (including the `bin`

directory of the JDK). Proper configuration enables developers to run Java commands and tools from

the command line or scripts.

The significance of the JDK in Java Development

1. Complete Development Environment

The JDK provides a complete and integrated development environment for Java developers. With

tools for compiling, debugging, documenting, and packaging Java applications, developers can

perform all essential tasks without relying on external tools or third-party solutions.

2. Cross-Platform Development

One of Java's core principles is "Write Once, Run Anywhere" (WORA). The JDK, with its ability to

generate platform-independent bytecode, contributes significantly to achieving this principle.

Developers can write Java code on one platform and confidently expect it to run on any other platform

with a compatible JVM.

3. Community and Industry Standard

The JDK is not only a product of Oracle but is also an industry standard for Java development. Its

features and tools are widely adopted, and its compatibility with various IDEs (Integrated

Development Environments) and build systems make it a preferred choice for Java developers across

the globe. The open-source nature of some JDK distributions, such as OpenJDK, enhances

transparency and collaboration within the Java community.

4. Support for Modern Java Features

As Java evolves, the JDK evolves with it. New versions of the JDK bring support for the latest

features introduced in the Java language. Features such as lambdas, modules, and records, introduced

in recent Java versions, are made accessible to developers through updated JDK releases.

5. Security and Updates

Oracle and other JDK maintainers actively address security vulnerabilities and provide timely

updates. Developers can benefit from the latest security patches and enhancements by regularly

updating their JDK installations. The commitment to security underscores the JDK's role in

supporting robust and secure Java applications.

Challenges and Future Directions

1. Licensing Changes

Oracle's decision to change the licensing and distribution model for Oracle JDK has led to increased

attention on alternative JDK distributions, such as OpenJDK and AdoptOpenJDK. Developers need to

consider licensing implications and choose a distribution that aligns with their project's requirements.

2. Project Loom and the Future of Concurrency

Project Loom, an initiative within the Java community, aims to simplify concurrent programming in

Java by introducing lightweight, user-mode threads called fibers. This project could significantly

impact how developers approach concurrency in Java, potentially making it more accessible and

efficient.

3. Adoption of New Java Versions

Encouraging developers to adopt the latest Java versions remains a challenge. While the introduction

of a six-month release cadence for Java has accelerated the delivery of new features, some

organizations and projects may be hesitant to upgrade due to concerns about compatibility and the

need for thorough testing.

Conclusion

The Java Development Kit stands as an indispensable toolkit for Java developers, empowering them

to create robust, cross-platform applications.

1.3 Java Runtime Environment (JRE): Unveiling the Engine of

Java Applications

Introduction

The Java Runtime Environment (JRE) is a crucial component in the Java ecosystem, serving as the

engine that enables the execution of Java applications. Developed by Oracle Corporation, the JRE

provides the necessary runtime support for Java programs, allowing them to run on diverse hardware

and operating systems. In this exploration, we delve into the components, functionalities, and

significance of the Java Runtime Environment.

Evolution of the JRE

The concept of a runtime environment in the context of programming languages has evolved over the

years. In the case of Java, the need for a runtime environment became evident as the language aimed

to achieve platform independence through the "Write Once, Run Anywhere" (WORA) principle. The

JRE, as a dedicated runtime environment for Java, has undergone refinement and expansion to

accommodate new features, enhance performance, and address the evolving needs of the Java

programming language.

Components of the JRE

1. Java Virtual Machine (JVM)

At the core of the JRE is the Java Virtual Machine (JVM). The JVM is responsible for interpreting

and executing Java bytecode, the intermediate form of Java code generated by the Java compiler. It

provides a runtime environment that abstracts the underlying hardware and operating system, enabling

Java applications to run consistently across different platforms.

- Class Loader: The class loader is responsible for loading classes into the JVM as they are referenced

by the running Java program. It dynamically loads classes as needed, facilitating a more efficient and

modular approach to application development.

- Bytecode Verifier: Before executing bytecode, the JVM employs a bytecode verifier to ensure that

the code adheres to the rules and restrictions imposed by the Java language. This verification step

enhances security by preventing the execution of malformed or malicious bytecode.

- Interpreter and Just-In-Time (JIT) Compiler: The JVM includes an interpreter that directly executes

bytecode. Additionally, modern JVMs often employ a Just-In-Time compiler that translates bytecode

into native machine code for improved performance. This combination of interpretation and

compilation contributes to the JVM's efficiency.

- Garbage Collector: Memory management is a critical aspect of Java application development. The

garbage collector within the JVM automatically identifies and deallocates memory occupied by

objects that are no longer reachable, reducing the risk of memory leaks and simplifying memory

management for developers.

2. Java Application Programming Interface (API)

The JRE includes a rich set of libraries and APIs that provide essential functionality for Java

applications. These libraries cover a wide range of areas, including input/output operations,

networking, graphical user interfaces, data structures, and more. The Java API simplifies development

by offering pre-built components that developers can leverage, saving time and effort.

3. Java Runtime Libraries

The Java Runtime Libraries, a subset of the Java API, include core packages such as `java.lang`,

`java.util`, and `java.io`. These libraries provide fundamental classes and utilities that form the

backbone of Java applications. For example, the `java.lang` package contains essential classes like

`Object`, `String`, and `System`, while `java.util` includes classes for data structures like lists, maps,

and queues.

4. Java Native Interface (JNI)

The Java Native Interface allows Java code to interact with applications and libraries written in other

languages, such as C and C++. JNI enables the incorporation of native code into Java applications

when necessary. This capability is particularly useful for tasks that require low-level system access or

integration with existing non-Java codebases.

JRE Installation and Configuration

1. Downloading and Installing the JRE

End-users and those focused solely on running Java applications typically install the Java Runtime

Environment. The installation process involves downloading the appropriate JRE distribution for the

target operating system from the official Oracle website or other trusted sources. Alternatively, users

can opt for open-source implementations of the JRE, such as OpenJDK or AdoptOpenJDK.

2. Environment Variables and Configuration

Once installed, configuring the system's environment variables is essential for proper functioning. The

`PATH` variable should include the directory containing the JRE binaries to enable users to run Java

applications from the command line or scripts. Additionally, setting the `JAVA_HOME` variable to

point to the JRE installation directory ensures compatibility with various tools and applications that

rely on the presence of the JRE.

The Significance of the JRE in Java Development

1. Platform Independence

A central tenet of Java's design philosophy is its platform independence, and the JRE plays a pivotal

role in realizing this goal. By providing a consistent runtime environment through the JVM, the JRE

enables Java applications to execute on any device or operating system equipped with a compatible

JRE implementation. This "Write Once, Run Anywhere" capability is a cornerstone of Java's success

in diverse application domains.

2. Ease of Deployment

Java applications, packaged as bytecode and accompanied by necessary resources, can be distributed

as standalone JAR (Java Archive) files. End-users only need to have a compatible JRE installed on

their systems to run these applications, eliminating the need for recompilation or modification based

on the target platform. This ease of deployment has contributed to the widespread adoption of Java in

various contexts, from desktop applications to web services.

3. Security and Sandboxing

The JRE incorporates security features that contribute to the overall robustness of Java applications.

The JVM's bytecode verifier ensures that only valid and safe code is executed, reducing the risk of

security vulnerabilities. Additionally, the ability to run Java applications in a sandboxed environment

enhances security by restricting access to certain resources and operations, mitigating potential

threats.

4. Compatibility and Interoperability

The JRE's adherence to Java standards ensures a high degree of compatibility across different

implementations. Applications developed and tested on one JRE implementation can typically run on

others without modification, fostering interoperability and allowing users to choose from various JRE

distributions based on their preferences or requirements.

5. Dynamic Class Loading and Code Extensibility

Java applications can dynamically load classes at runtime, a capability facilitated by the JRE's class-

loading mechanism. This feature allows applications to adapt, extend, and modify their behavior

without requiring a restart. It is particularly valuable in scenarios where plugins or modules need to be

added or updated without disrupting the application's operation.

Challenges and Future Directions

1. Security Concerns and Updates

While Java's security features are robust, the evolving threat landscape necessitates continuous

vigilance and updates. Regular updates to the JRE address security vulnerabilities and introduce

improvements. However, ensuring that end-users promptly apply these updates remains a challenge,

and organizations must actively manage the security of their Java runtime environments.

2. Containerization and Cloud-Native Development

As modern software development embraces containerization and cloud-native architectures, adapting

the JRE to these paradigms becomes crucial. Efforts to optimize the JRE for containerized

environments, where lightweight and efficient runtimes are favored, are ongoing. The integration of

the JRE with container orchestration tools such as Docker and Kubernetes is a key area of exploration.

3. Project Loom and Fiber

Project Loom, an initiative within the Java community, aims to simplify concurrent programming by

introducing lightweight, user-mode threads called fibers. The success and adoption of Project Loom

could reshape how Java applications handle concurrency, offering developers.

1.4 Java Compiler: The Architect of Bytecode Transformation

Introduction

The Java Compiler is a critical component of the Java development toolkit, responsible for translating

human-readable Java source code into an intermediate form known as bytecode. Developed as part of

the Java Development Kit (JDK) by Sun Microsystems and now maintained by Oracle, the Java

Compiler plays a pivotal role in realizing the "Write Once, Run Anywhere" (WORA) principle, a core

tenet of the Java programming language. In this exploration, we delve into the intricacies of the Java

Compiler, examining its components, functionalities, and its significance in the software development

lifecycle.

Historical Evolution

The evolution of the Java Compiler is closely tied to the inception and growth of the Java

programming language. The first version of Java, released in 1995, featured a simple compiler that

translated Java source code into bytecode. As Java gained popularity and underwent various

enhancements, the compiler evolved to support new language features, optimizations, and

compatibility with different platforms.

Components of the Java Compiler

1. Tokenizer and Lexer

The Java Compiler begins its journey by processing the source code through a series of lexical

analysis phases. The source code is broken down into tokens, which are the smallest units of meaning

in the Java language. The tokenizer and lexer work in tandem to recognize keywords, identifiers,

literals, and other language elements, preparing the code for subsequent parsing.

2. Parser

The parser is responsible for syntactic analysis, interpreting the structure of the source code based on

the grammar rules of the Java language. It constructs an abstract syntax tree (AST), representing the

hierarchical structure of the code. The AST serves as an intermediate representation that captures the

relationships and dependencies among different elements in the code.

3. Semantic Analyzer

After syntactic analysis, the compiler engages in semantic analysis to ensure that the code adheres to

the rules and semantics of the Java language. This phase involves type checking, scope resolution, and

the enforcement of various language constraints. The semantic analyzer plays a crucial role in

identifying and reporting errors related to type mismatches, undeclared variables, and other semantic

issues.

4. Intermediate Code Generator

With the AST and semantic analysis in place, the compiler proceeds to generate intermediate code. In

the case of Java, this intermediate code is known as bytecode. Bytecode is a platform-independent

representation of the source code and serves as an intermediary between the high-level Java code and

the machine code of the target platform.

5. Optimizations

Modern Java compilers incorporate a range of optimization techniques to enhance the performance of

the generated bytecode. These optimizations may include constant folding, dead code elimination,

inlining, and other transformations aimed at producing more efficient and streamlined bytecode. The

goal is to improve the runtime performance of Java applications without altering their observable

behavior.

6. Code Generation

The final step of the compilation process involves the generation of machine-specific code or

bytecode. In the context of Java, the output is bytecode in the form of `.class` files. These files contain

the compiled code that can be executed by the Java Virtual Machine (JVM). The code generation

phase takes into account the target platform's architecture and instruction set, ensuring compatibility

and optimal performance.

Java Compiler Versions

1. Classic Compiler (javac)

The original Java Compiler, known as the "Classic Compiler," was the first compiler developed for

the Java language. It underwent improvements and optimizations over the years, supporting features

introduced in various Java versions. The Classic Compiler is still in use today and serves as a robust

and reliable tool for compiling Java source code.

2. Java Compiler API

In addition to the traditional command-line compiler (javac), Java provides a Compiler API that

allows developers to programmatically invoke the compilation process. This API, part of the

javax.tools package, provides a programmatic interface for interacting with the Java Compiler.

Developers can use it to dynamically compile Java code within their applications, facilitating

scenarios such as runtime code generation and compilation.

3. Ahead-of-Time (AOT) Compilation

Java 9 introduced the concept of Ahead-of-Time (AOT) compilation with the GraalVM compiler.

AOT compilation allows Java applications to be compiled into native machine code ahead of

execution, potentially improving startup time and reducing the runtime footprint. While AOT

compilation is not the default mode for Java applications, it provides an alternative for specific use

cases and deployment scenarios.

Java Compiler Options and Flags

The Java Compiler offers a variety of options and flags that developers can use to customize the

compilation process. Some common options include:

- -classpath or -cp: Specifies the location of the class files and libraries needed during compilation.

- -d: Specifies the destination directory for the compiled bytecode.

- -source and -target: Specifies the version of the Java source code and the target bytecode version,

allowing developers to maintain compatibility with specific Java versions.

- -Xlint: Enables or disables specific warnings issued by the compiler. It allows developers to control

the level of detail in the compiler's feedback.

- -g: Includes debugging information in the compiled bytecode, facilitating debugging with tools like

a debugger or profiler.

Java Compiler in the Software Development Lifecycle

1. Development Phase

During the development phase, the Java Compiler is a fundamental tool used by developers to

transform human-readable source code into executable bytecode. Developers write Java code using an

integrated development environment (IDE) or a text editor, and they invoke the compiler to check for

syntax errors, perform type checking, and generate bytecode.

2. Build Automation

In build automation systems such as Apache Maven or Gradle, the Java Compiler is a key component

in the build process. These systems use the compiler to compile the source code, manage

dependencies, and create the final artifacts, such as JAR files. The build process ensures that the entire

codebase is compiled consistently and that dependencies are resolved.

3. Continuous Integration and Deployment (CI/CD)

In CI/CD pipelines, the Java Compiler is integrated to automate the compilation and testing of code

changes. Automated builds triggered by version control events use the compiler to ensure that new

code adheres to quality standards and does not introduce compilation errors. This integration helps

catch issues early in the development lifecycle.

4. Code Analysis and Quality Assurance

Static code analysis tools often leverage the Java Compiler to perform in-depth analyses of the

codebase. These tools can identify potential issues, enforce coding standards, and provide insights

into code complexity. The compiler-generated bytecode serves as a foundation for various code

quality metrics and analyses.

Significance of the Java Compiler

1. Cross-Platform Compatibility

The Java Compiler plays a crucial role in achieving Java's platform independence. By translating

source code into bytecode, the compiler enables Java applications to run on any device or platform

with a compatible Java Virtual Machine (JVM). This cross-platform compatibility is a key factor in

Java's ubiquity across diverse computing environments.

2. Productivity and Development Speed

The Java Compiler contributes to the productivity of developers by providing rapid feedback during

the coding phase. As developers write code, the compiler highlights syntax errors and issues, allowing

for immediate correction. Additionally, the compiler's ability to generate bytecode quickly supports

agile development practices, where code changes can be validated rapidly.

3. Optimization and Performance

Through various optimization techniques, the Java Compiler enhances the performance of Java

applications. The generated bytecode benefits from optimizations that improve execution speed and

reduce resource consumption. The ongoing evolution of the compiler includes advancements aimed at

further optimizing Java applications in terms of both startup time and runtime performance.

4. Enforcement of Language Constraints

The Java Compiler enforces language constraints defined by the Java language specification. It

ensures that the code adheres to syntactic and semantic rules, reducing the likelihood of runtime

errors. By catching errors early in the development process, the compiler contributes to the creation of

robust and reliable Java applications.

5. Facilitating Code Analysis and Tools

The Java Compiler generates bytecode that serves as the foundation for various code analysis tools,

static analyzers, and IDE features. These tools leverage the compiler's output to provide insights into

code quality, identify potential issues, and offer automated refactorings. The compiler's role extends

beyond code generation to supporting a rich ecosystem of development tools.

Challenges and Future Directions

1. Compilation Speed and Efficiency

As software projects grow in size and complexity, compilation speed becomes a critical factor in

developer productivity. Efforts are ongoing to improve the speed and efficiency of the Java Compiler,

including advancements in incremental compilation and the exploration of parallel compilation

strategies.

2. Integration with Modern Development Practices

The Java Compiler continues to adapt to modern development practices, including the rise of

microservices, cloud-native architectures, and containerization. Integration with build tools, container

orchestration platforms, and cloud deployment scenarios remains an area of focus to streamline the

development and deployment processes.

3. Enhancements in Ahead-of-Time Compilation

The exploration of Ahead-of-Time (AOT) compilation, as introduced with GraalVM, represents a

potential shift in the way Java applications are compiled and executed. AOT compilation has the

potential to improve startup times and reduce the runtime overhead associated with the Java Virtual

Machine.

4. Language Features and Compatibility

As the Java language evolves with each new version, the Java Compiler must stay in sync to support

new language features and enhancements. This includes support for features introduced in recent

versions, such as records, pattern matching, and sealed classes. Compiler updates are essential to

unlock the full potential of the Java language for developers.

Conclusion

The Java Compiler stands as a fundamental and integral part of the Java development toolkit. It plays

a multifaceted role in the software development lifecycle, from the initial stages of code creation to

the final steps of deployment. The continuous evolution of the Java Compiler reflects the commitment

to enhancing the performance, efficiency, and capabilities of Java applications. As developers

navigate the intricacies of Java development, the compiler remains a reliable companion, transforming

high-level Java code into bytecode and enabling the realization of Java's core principles of platform

independence and "Write Once, Run Anywhere."

M.Sc. (Computer Science)

SEMESTER-3

COURSE: Web Programming
UNIT 2: FUNDAMENTALS OF JAVA

2.1 Java Vs. C++

2.2 Byte Code

2.3 Java Virtual Machine

2.4 Constants

2.5 Variables

2.6 Data types

2.7 Operators

2.8 Expressions

2.9 Control structures

2.10 Defining class and Creating objects

2.11 Accessing class members

2.12 Constructors

2.13 Garbage Collection

2.14 Method overloading

2.1 Java Vs. C++
Introduction

Java and C++ are two influential and widely-used programming languages that have shaped the

landscape of software development. Both languages have their strengths, weaknesses, and unique

features, making them suitable for different types of applications and scenarios. In this exploration,

we will delve into the fundamentals of Java and C++, comparing key aspects such as syntax, memory

management, performance, platform independence, and community support.

I. Syntax and Language Features

1. Java Syntax

a. Simplicity and Readability:

Java is known for its clean and readable syntax. It was designed with a focus on simplicity and ease of

use, making it an ideal language for developers who value readability and maintainability. Java's

syntax is influenced by C and C++, but it eliminates some of the more complex features of C++,

aiming for a more straightforward and approachable language.

b. Object-Oriented Paradigm:

Java is a fully object-oriented programming language. Everything in Java is treated as an object, and

the language supports encapsulation, inheritance, and polymorphism as core principles. This object-

oriented nature contributes to modular and organized code structures.

c. Memory Management:

Java incorporates automatic memory management through a garbage collector. Developers don't need

to explicitly manage memory allocation and deallocation, reducing the likelihood of memory leaks

and segmentation faults. This simplifies the development process but can introduce some overhead.

2. C++ Syntax

a. Versatility and Expressiveness:

C++ is known for its versatility and expressiveness. It provides low-level features for systems

programming while also supporting high-level abstractions through object-oriented programming

(OOP) and generic programming. C++ syntax can be more complex than Java, offering a broad range

of features for developers who require fine-grained control over memory and system resources.

b. Multiple Paradigms:

C++ supports multiple programming paradigms, including procedural, object-oriented, and generic

programming. This versatility allows developers to choose the paradigm that best fits their needs,

making C++ suitable for a wide range of applications.

c. Memory Management:

Unlike Java, C++ requires manual memory management. Developers have explicit control over

memory allocation and deallocation, which can lead to more efficient memory usage but also

introduces the risk of memory-related errors, such as memory leaks and segmentation faults.

II. Memory Management

1. Java Memory Management

a. Garbage Collection:

Java employs automatic garbage collection to manage memory. The garbage collector identifies and

deallocates objects that are no longer reachable, simplifying memory management for developers.

While this approach reduces the risk of memory-related bugs, it can introduce some performance

overhead.

b. Memory Safety:

Java's memory management model enhances memory safety by eliminating issues such as dangling

pointers and memory leaks. Developers do not have direct access to memory addresses, reducing the

likelihood of runtime errors related to manual memory management.

2. C++ Memory Management

a. Manual Memory Management:

C++ requires explicit memory management, and developers are responsible for allocating and

deallocating memory using operators like `new` and `delete` or using smart pointers. While this

manual control offers flexibility, it also introduces the potential for memory leaks and segmentation

faults if not handled carefully.

b. Efficiency and Control:

C++'s manual memory management allows for fine-grained control over memory, leading to

potentially more efficient resource usage. However, this efficiency comes at the cost of increased

complexity and the need for careful attention to memory-related issues.

III. Platform Independence

1. Java's Platform Independence

a. Java Virtual Machine (JVM):

Java achieves platform independence through the use of the Java Virtual Machine (JVM). Java source

code is compiled into bytecode, which is then executed by the JVM. As long as a JVM is available for

a specific platform, Java programs can run without modification, adhering to the "Write Once, Run

Anywhere" (WORA) principle.

b. Portability:

Java applications are highly portable, allowing developers to write code on one platform and run it on

various platforms without recompilation. This portability is a significant advantage in scenarios where

applications need to run on diverse environments.

2. C++ Platform Dependence

a. Compilation to Native Code:

C++ code is typically compiled to native machine code specific to the target platform. While this

approach can result in optimized and efficient executables, it also means that C++ programs need to

be recompiled for each target platform, making them less portable compared to Java.

b. Platform-Specific Considerations:

C++ developers often need to consider platform-specific details, such as different compilers, libraries,

and system architectures. This can lead to additional effort in maintaining and ensuring compatibility

across various platforms.

IV. Performance Considerations

1. Java Performance Characteristics

a. Just-In-Time Compilation:

Java uses Just-In-Time (JIT) compilation to convert bytecode into native machine code at runtime.

While this introduces a slight overhead during startup, it can result in optimized performance during

the execution of long-running applications.

b. Runtime Performance:

Java's runtime performance has improved significantly over the years, but it may still be perceived as

slightly slower than natively compiled languages like C++. However, the performance difference is

often negligible for many applications, especially considering the benefits of platform independence.

2. C++ Performance Characteristics

a. Ahead-of-Time Compilation:

C++ programs are typically compiled ahead of time into native machine code. This can lead to faster

startup times compared to Java, as there is no need for JIT compilation. Additionally, C++ allows for

optimizations that can result in highly efficient executables.

b. Fine-Grained Control:

C++ provides developers with fine-grained control over low-level details, allowing for manual

memory management and optimizations. This control can lead to highly performant code, especially

in scenarios where maximum efficiency is crucial.

V. Community Support and Ecosystem

1. Java Ecosystem

a. Mature Libraries and Frameworks:

Java boasts a mature and extensive ecosystem of libraries and frameworks. The Java Standard Edition

(SE) and Java Enterprise Edition (EE) provide a rich set of APIs for various application domains.

Additionally, popular frameworks like Spring, Hibernate, and Apache Camel contribute to the

robustness of the Java ecosystem.

b. Community Engagement:

Java has a large and active community of developers, which facilitates knowledge sharing,

collaboration, and the creation of open-source projects. The community-driven nature of Java has

contributed to the language's enduring popularity and adaptability.

2. C++ Ecosystem

a. Diverse Libraries and Tools:

C++ also has a diverse ecosystem with a multitude of libraries and tools. The Standard Template

Library (STL) is a powerful collection of template classes and functions, and there are numerous

third-party libraries for tasks ranging from graphics programming to numerical computation.

b. Specialized Communities:

C++ is used extensively in domains such as systems programming, game development, and high-

performance computing. While the C++ community may be more specialized than Java's, it is highly

engaged and contributes to the development of tools and libraries tailored to specific needs.

Conclusion

Java and C++ are both powerful programming languages with distinct characteristics that cater to

different development needs. The choice between Java and C++ depends on various factors, including

the nature of the project, development goals, and specific requirements. Java's platform independence,

memory safety, and robust ecosystem make it an excellent choice for enterprise applications, web

development, and mobile applications. On the other hand, C++'s fine-grained control over memory,

high performance, and versatility make it a preferred language for systems programming, game

development, and scenarios where maximum efficiency is crucial. Understanding the fundamental

differences between Java and C++ empowers developers to make informed decisions based on the

specific demands of their projects and the trade-offs involved in each language.

2.2 Byte Code
Definition:

Byte code is an intermediate code generated by a compiler after translating the source code written in

a high-level programming language into a low-level, platform-independent representation. It is a set

of instructions that is not directly executed by the CPU but is instead interpreted or executed by a

virtual machine.

Purpose:

The use of byte code is a key feature in achieving platform independence in Java. Instead of

generating native machine code for each platform, Java compilers generate byte code, which can be

executed by any device or system that has a Java Virtual Machine (JVM).

Characteristics:

1. Platform Independence: Byte code is designed to be platform-independent, allowing Java

programs to run on any device or operating system with a compatible JVM.

2. Compact and Efficient: Byte code is generally more compact than native machine code, making it

easier to distribute and download Java programs over the internet. It is also designed for efficient

interpretation by the JVM.

3. Security: Byte code is considered more secure than native code because it is executed by the JVM,

which provides a layer of abstraction and security checks, preventing certain types of malicious

activities.

2.3 Java Virtual Machine (JVM):
Definition:

The Java Virtual Machine (JVM) is a virtual machine that provides an execution environment for Java

applications. It interprets and executes Java byte code, making it possible for Java programs to run on

any device or platform that has a compatible JVM.

Key Components:

1. Class Loader: Responsible for loading classes into the JVM at runtime. Classes can be loaded

from the local file system, network, or other sources.

2. Byte Code Verifier: Ensures that the loaded byte code adheres to the Java Virtual Machine

specification, preventing the execution of potentially harmful code.

3. Interpreter: Interprets and executes the Java byte code line by line. While interpretation is

generally slower than direct execution of native code, it allows for platform independence.

4. Just-In-Time (JIT) Compiler: Translates frequently executed portions of byte code into native

machine code for improved performance. This compilation happens at runtime.

5. Garbage Collector: Manages memory by reclaiming unused objects and freeing up resources,

preventing memory leaks.

6. Execution Engine: Executes the byte code, either through interpretation or compilation to native

code, depending on the JVM implementation.

JVM Advantages:

1. Platform Independence: JVM allows Java programs to be run on any device or operating system

that has a compatible JVM installed.

2. Memory Management: JVM automates memory management, reducing the risk of memory leaks

and making it easier for developers to write robust applications.

3. Security: The JVM provides a secure execution environment by enforcing access controls,

verifying byte code, and offering features like the sandbox for applets.

4. Performance Optimization: The JIT compiler enhances performance by translating frequently

executed code into native machine code.

2.4 Constants:

Definition:

Constants in programming are values or expressions that remain unchanged during the execution of a

program. They are used to store fixed values such as numbers, characters, or strings that do not

change their values during the program's execution.

Types of Constants:

1. Numeric Constants: These include integers, floating-point numbers, and hexadecimal numbers.

For example:

 int age = 25;

 float pi = 3.14;

2. Character Constants: Represent single characters and are enclosed in single quotes. For example:

 char grade = 'A';

3. String Constants: Represent sequences of characters and are enclosed in double quotes. For

example:

 String message = "Hello, World!";

4. Boolean Constants: Represent the values `true` or `false`. For example:

 boolean isJavaFun = true;

Use of Constants:

1. Readability: Constants improve code readability by providing meaningful names for fixed values,

making it easier for developers to understand the purpose of the values used in the program.

2. Maintenance: If a constant value needs to be changed, it can be done in one place (the constant

declaration), affecting all occurrences in the code. This simplifies maintenance and reduces the risk of

errors.

3. Avoiding Magic Numbers: Constants are used to avoid the use of "magic numbers" (hard-coded

numerical values without explanation), which can be confusing and error-prone.

2.5 Variables:
Definition:

A variable is a named storage location in a program that holds a value, and the value may change

during the execution of the program. Variables provide a way to manipulate and store data in

computer programs.

Key Concepts:

1. Declaration: Before using a variable, it must be declared, specifying its data type and name. For

example:

 int count;

2. Initialization: Variables can be given an initial value at the time of declaration or later in the

program. For example:

 int count = 0; // Initialization at declaration

3. Assignment: The value of a variable can be changed through assignment statements. For example:

 count = 10; // Assigning a new value to the variable

4. Data Types: Variables have data types that determine the type of values they can store, such as

integers, floating-point numbers, characters, etc.

Types of Variables:

1. Local Variables: Declared within a method or block of code and are only accessible within that

scope.

2. Instance Variables (Fields): Belong to an object and are declared within a class but outside any

method. They are unique to each instance of the class.

3. Class Variables (Static Variables): Belong to the class rather than any specific instance. They are

declared using the `static` keyword.

Scope and Lifetime:

- Scope: Refers to the region of the program where a variable can be accessed.

- Lifetime: Refers to the duration for which a variable exists in memory during program execution.

Variable Naming Conventions:

- Variable names should be meaningful and reflect the purpose of the variable.

- Use camelCase for variable names (e.g., `totalAmount`, `employeeSalary`).

- Avoid using single-letter variable names, except for loop counters.

2.6 Data Types:
Definition:

In programming, a data type is a classification of data that determines the type of operations that can

be performed on the data and the way the data is stored in memory. Java is a strongly-typed language,

meaning that each variable must be declared with a specific data type.

Primitive Data Types:

1. Integer Types:

 - `byte`: 8-bit signed integer (-128 to 127).

 - `short`: 16-bit signed integer (-32,768 to 32,767).

 - `int`: 32-bit signed integer (-2^31 to 2^31-1).

 - `long`: 64-bit signed integer (-2^63 to 2^63-1).

2. Floating-Point Types:

 - `float`: 32-bit floating-point (single precision

).

 - `double`: 64-bit floating-point (double precision).

3. Character Type:

 - `char`: 16-bit Unicode character.

4. Boolean Type:

 - `boolean`: Represents true or false.

Reference Data Types:

1. Class Types: Objects created from classes.

 String str = new String("Hello");

2. Interface Types: Similar to class types, representing a set of abstract methods.

 Runnable runnableObj = new MyRunnable();

3. Array Types: Collections of elements of the same data type.

 int[] numbers = {1, 2, 3, 4, 5};

User-Defined Data Types:

1. Classes: Developers can define their own classes, creating custom data types with properties and

methods.

2. Enumerations (Enums): A special data type used to define collections of constants.

 enum Day {SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY};

Type Casting:

- Implicit Casting (Widening): Automatic conversion of a smaller data type to a larger data type.

 int intValue = 10;

 double doubleValue = intValue; // Implicit casting from int to double

- Explicit Casting (Narrowing): Manual conversion of a larger data type to a smaller data type,

requiring explicit casting.

 double doubleValue = 10.5;

 int intValue = (int) doubleValue; // Explicit casting from double to int

2.7 Operators
1. Arithmetic Operators:

Explanation:

Arithmetic operators perform mathematical operations on numeric values. In Java, the basic

arithmetic operators include addition (`+`), subtraction (`-`), multiplication (`*`), division (`/`), and

modulus (`%`).

- Addition (`+`): Adds two operands.

 int sum = operand1 + operand2;

- Subtraction (`-`): Subtracts the right operand from the left operand.

 int difference = operand1 - operand2;

- Multiplication (`*`): Multiplies two operands.

 int product = operand1 * operand2;

- Division (`/`): Divides the left operand by the right operand.

 int quotient = operand1 / operand2;

- Modulus (`%`): Returns the remainder of the division of the left operand by the right operand.

 int remainder = operand1 % operand2;

Numerical Examples:

Let's consider numerical examples to illustrate arithmetic operators:

int a = 10;

int b = 3;

// Addition

int sum = a + b; // Result: 13

// Subtraction

int difference = a - b; // Result: 7

// Multiplication

int product = a * b; // Result: 30

// Division

int quotient = a / b; // Result: 3

// Modulus

int remainder = a % b; // Result: 1

In this example, `a` and `b` are operands, and the respective operations demonstrate the use of

arithmetic operators.

2. Relational Operators:

Explanation:

Relational operators are used to compare values and return a boolean result. In Java, these operators

include equal to (`==`), not equal to (`!=`), greater than (`>`), less than (`<`), greater than or equal to

(`>=`), and less than or equal to (`<=`).

- Equal to (`==`): Returns `true` if the left operand is equal to the right operand.

 boolean isEqual = operand1 == operand2;

- Not equal to (`!=`): Returns `true` if the left operand is not equal to the right operand.

 boolean isNotEqual = operand1 != operand2;

- Greater than (`>`): Returns `true` if the left operand is greater than the right operand.

 boolean isGreaterThan = operand1 > operand2;

- Less than (`<`): Returns `true` if the left operand is less than the right operand.

 boolean isLessThan = operand1 < operand2;

- Greater than or equal to (`>=`): Returns `true` if the left operand is greater than or equal to the right

operand.

 boolean isGreaterOrEqual = operand1 >= operand2;

- Less than or equal to (`<=`): Returns `true` if the left operand is less than or equal to the right

operand.

 boolean isLessOrEqual = operand1 <= operand2;

Numerical Examples:

Consider the following numerical examples to illustrate relational operators:

int x = 5;

int y = 8;

// Equal to

boolean isEqual = (x == y); // Result: false

// Not equal to

boolean isNotEqual = (x != y); // Result: true

// Greater than

boolean isGreaterThan = (x > y); // Result: false

// Less than

boolean isLessThan = (x < y); // Result: true

// Greater than or equal to

boolean isGreaterOrEqual = (x >= y); // Result: false

// Less than or equal to

boolean isLessOrEqual = (x <= y); // Result: true

In these examples, the relational operators compare the values of `x` and `y`, producing boolean

results.

3. Logical Operators:

Explanation:

Logical operators perform logical operations on boolean values. In Java, the logical operators include

logical AND (`&&`), logical OR (`||`), and logical NOT (`!`).

- Logical AND (`&&`): Returns `true` if both the left and right operands are `true`.

 boolean result = (operand1 && operand2);

- Logical OR (`||`): Returns `true` if at least one of the operands is `true`.

 boolean result = (operand1 || operand2);

- Logical NOT (`!`): Returns `true` if the operand is `false`, and vice versa.

 boolean result = !operand;

Numerical Examples:

Let's use numerical examples to illustrate logical operators:

boolean a = true;

boolean b = false;

// Logical AND

boolean logicalAnd = (a && b); // Result: false

// Logical OR

boolean logicalOr = (a || b); // Result: true

// Logical NOT

boolean logicalNotA = !a; // Result: false

boolean logicalNotB = !b; // Result: true

In these examples, logical operators combine boolean values to produce logical results.

4. Assignment Operators:

Explanation:

Assignment operators are used to assign values to variables. In Java, the basic assignment operator is

`=`. Additionally, compound assignment operators, such as `+=`, `-=`, `*=`, and `/=`, combine an

operation with assignment.

- Assignment (`=`): Assigns the value of the right operand to the left operand.

 variable = expression;

- Compound Assignment (`+=`, `-=`, `*=`, `/=`): Combines an arithmetic operation with assignment.

 variable += expression; // Equivalent to variable = variable + expression;

Numerical Examples:

Consider the following numerical examples to illustrate assignment operators:

int c = 7;

// Assignment

c = 10; // c is now 10

// Compound Assignment

c += 3; // Equivalent to c = c + 3; // Result: 13

c -= 2; // Equivalent to c = c - 2; // Result: 11

c *= 5; // Equivalent to c = c * 5; // Result: 55

c /= 2; // Equivalent to c = c / 2; // Result: 27

In these examples, assignment and compound assignment operators are used to modify the value of

the variable `c`.

5. Increment and Decrement Operators:

Explanation:

Increment and decrement operators are used to increase or decrease the value of a variable by 1. In

Java, these operators are `++` (increment) and `--` (decrement). They can be used in both pre-

increment/decrement and post-increment/decrement forms.

- Increment (`++`): Increases the value of the operand by 1.

 variable++; // Post-increment

 ++variable; // Pre-increment

- Decrement (`--`): Decreases the value of the operand by 1.

 variable--; // Post-decrement

 --variable; // Pre-decrement

Numerical Examples:

Let's use numerical examples to illustrate increment and decrement operators:

int counter = 0;

// Increment

counter++; // Post-increment // Result: 1

++counter; // Pre-increment // Result: 2

// Decrement

counter--; // Post-decrement // Result: 1

--counter; // Pre-decrement // Result: 0

In these examples, increment and decrement operators modify the value of the variable `counter`.

6. Bitwise Operators:

Explanation:

Bitwise operators perform operations at the bit level, manipulating individual bits of integer values. In

Java, the bitwise operators include bitwise AND (`&`), bitwise OR (`|`), bitwise XOR (`^`), and

bitwise complement (`~`).

- Bitwise AND (`&`): Performs a bitwise AND operation between corresponding bits of the operands.

 int result = operand1 & operand2;

- Bitwise OR (`|`): Performs a bitwise OR operation between corresponding bits of the operands.

 int result = operand1 | operand2;

- Bitwise XOR (`^`): Performs a bitwise exclusive OR operation between corresponding bits of the

operands.

 int result = operand1 ^ operand2;

- Bitwise Complement (`~`): Flips the bits of the operand, changing 1s to 0s and vice versa.

 int result = ~operand;

Numerical Examples:

Consider the following numerical examples to illustrate bitwise operators:

int x = 5; // Binary: 0101

int y = 3; // Binary: 0011

// Bitwise AND

int bitwiseAnd = x & y; // Result: 1 (Binary: 0001)

// Bitwise OR

int bitwiseOr = x | y; // Result: 7 (Binary: 0111)

// Bitwise XOR

int bitwiseXor = x ^ y; // Result: 6 (Binary: 0110)

// Bitwise Complement

int bitwiseComplementX = ~x; // Result: -6 (Binary: 11111111111111111111111111111010)

In these examples, bitwise operators manipulate the binary representations of integer values.

7. Conditional (Ternary) Operator:

Explanation:

The conditional operator, also known as the ternary operator, provides a concise way to write an if-

else statement in a single line. It has the form `(condition) ? expression1 : expression2`, where

`condition` is evaluated, and if it is `true`, `expression1` is executed; otherwise, `expression2` is

executed.

variable = (condition) ? expression1 : expression2;

Numerical Example:

Consider the following numerical example to illustrate the conditional operator:

int a = 10;

int b = 5;

// Conditional Operator

int max = (a > b) ? a : b; // If a > b, assign a to max; otherwise, assign b.

In this example, the value of `max` will be assigned the larger of the two values, `a` or `b`, based on

the condition `(a > b)`.

Conclusion:

Operators are fundamental elements in programming languages, allowing developers to perform

various operations on data. Understanding the different categories of operators, their theoretical

foundations, and numerical examples is crucial for writing effective and expressive code. Whether

working with arithmetic, relational, logical, assignment, increment/decrement, bitwise, or conditional

operators, developers can leverage these tools to build robust and efficient programs.

Certainly! Let's delve into each of the mentioned topics in Java, including expressions, control

structures, defining classes, creating objects, accessing class members, constructors, Garbage

Collection, and method overloading.

2.8. Expressions in Java:

In Java, an expression is a combination of variables, operators, and method calls that produces a

value. Expressions can be simple or complex and are fundamental to performing computations in a

program.

Explanation:

Arithmetic Expressions:

 - Arithmetic expressions involve mathematical operations using operators like `+`, `-`, `*`, `/`, and

`%`.

 int result = 5 + 3 * 2; // Result: 11

Boolean Expressions:

 - Boolean expressions evaluate to either `true` or `false` based on conditions.

 boolean isGreater = (5 > 3); // Result: true

String Concatenation:

 - Combining strings using the `+` operator.

 String greeting = "Hello, " + "World!"; // Result: "Hello, World!"

2.9 Control Structures in Java:
Control structures in Java govern the flow of execution in a program. Common control structures

include conditional statements (`if`, `else`, `switch`) and looping statements (`for`, `while`, `do-

while`).

Explanation:

- if-else Statement:

 - Used for decision-making based on a condition.

 int x = 10;

 if (x > 5) {

 // Code to execute if condition is true

 } else {

 // Code to execute if condition is false

 }

- switch Statement:

 - Used for multi-branching based on the value of an expression.

 int day = 2;

 switch (day) {

 case 1:

 // Code for Monday

 break;

 case 2:

 // Code for Tuesday

 break;

 // ... other cases

 default:

 // Code for other days

 }

- for Loop:

 - Executes a block of code a specified number of times.

 for (int i = 0; i < 5; i++) {

 // Code to execute in each iteration

 }

2.10. Defining Class and Creating Objects in Java:

In Java, a class is a blueprint for creating objects. Objects are instances of classes and encapsulate data

and behavior.

Explanation:

- Defining a Class:

 - A class definition includes fields (attributes) and methods (functions).

 public class Car {

 String model;

 int year;

 void start() {

 // Code to start the car

 }

 }

- Creating Objects:

 - Objects are instances of a class and are created using the `new` keyword.

 Car myCar = new Car();

 myCar.model = "Toyota";

 myCar.year = 2022;

2.11 Accessing Class Members in Java:

Accessing class members involves referring to the fields and methods of a class from within the class

or outside it.

Explanation:

- Accessing Fields:

 - Fields can be accessed using object references.

 String carModel = myCar.model; // Accessing the model field

- Accessing Methods:

 - Methods are called using object references.

 myCar.start(); // Calling the start method

2.12 Constructors in Java:

Constructors are special methods in Java used for initializing objects. They have the same name as the

class and are called when an object is created.

Explanation:

- Default Constructor:

 - A constructor with no parameters.

 public class Car {

 // Default constructor

 public Car() {

 // Initialization code

 }

 }

- Parameterized Constructor:

 - A constructor with parameters for initializing fields.

 public class Car {

 String model;

 int year;

 // Parameterized constructor

 public Car(String carModel, int carYear) {

 model = carModel;

 year = carYear;

 }

 }

2.13 Garbage Collection in Java:

Garbage Collection is a feature in Java that automatically reclaims memory occupied by objects that

are no longer in use.

Explanation:

- Automatic Memory Management:

 - Java's Garbage Collector automatically identifies and deletes unreferenced objects.

 Car myCar = new Car();

 // ... Code that no longer references myCar

 // Garbage Collector reclaims memory used by myCar

2.14 Method Overloading in Java:

Method overloading allows a class to have multiple methods with the same name but different

parameters.

Explanation:

- Overloaded Methods:

 - Methods with the same name but different parameter lists.

 public class Calculator {

 int add(int a, int b) {

 return a + b;

 }

 double add(double a, double b) {

 return a + b;

 }

 }

- Calling Overloaded Methods:

 - The correct method is called based on the arguments provided.

 Calculator calc = new Calculator();

 int sumInt = calc.add(5, 3); // Calls the int version

 double sumDouble = calc.add(5.5, 3.7); // Calls the double version

Conclusion:

In this comprehensive overview, we covered key concepts in Java programming, including

expressions, control structures, defining classes, creating objects, accessing class members,

constructors, Garbage Collection, and method overloading. Understanding these concepts is essential

for building robust and effective Java applications. Numerical examples and coding illustrate the

practical application of these concepts, fostering a deeper comprehension of Java programming

fundamentals.

M.Sc. (Computer Science)

SEMESTER-3

COURSE: Web Programming
UNIT 3: INHERITANCE

3.1 Different types of Inheritance

3.2 Member access

3.3 Using super keyword to call super class constructors

3.4 Creating a multilevel hierarchy

3.5 Method overriding

3.6 Dynamic method dispatch

3.7 Using abstract classes

3.8 Using Final keyword

Inheritance is a fundamental concept in object-oriented programming (OOP) that allows a class

(subclass or derived class) to inherit properties and behaviors from another class (superclass or base

class). This facilitates code reuse, extensibility, and the creation of a hierarchical class structure. In

Java, inheritance is implemented through the `extends` keyword.

3.1 Types of Inheritance:
1. Single Inheritance:

 - In single inheritance, a class extends only one superclass. The subclass inherits the fields and

methods of the single superclass.

 class Animal {

 void eat() {

 System.out.println("Animal is eating");

 }

 }

 class Dog extends Animal {

 void bark() {

 System.out.println("Dog is barking");

 }

 }

2. Multiple Inheritance (via Interfaces):

 - Java supports multiple inheritance through interfaces. A class can implement multiple interfaces,

allowing it to inherit from multiple sources.

 interface Swim {

 void swim();

 }

 class Fish implements Animal, Swim {

 // Fish can inherit from both Animal and Swim

 }

 Note: Direct multiple inheritance with classes is not supported in Java to avoid the "diamond

problem."

3. Multilevel Inheritance:

 - In multilevel inheritance, a class derives from another class, and then another class derives from it.

This creates a chain of inheritance.

 class Grandparent {

 // Grandparent class members

 }

 class Parent extends Grandparent {

 // Parent class members

 }

 class Child extends Parent {

 // Child class members

 }

4. Hierarchical Inheritance:

 - In hierarchical inheritance, multiple classes derive from a single superclass. Each subclass inherits

from the same superclass.

 class Vehicle {

 // Vehicle class members

 }

 class Car extends Vehicle {

 // Car class members

 }

 class Motorcycle extends Vehicle {

 // Motorcycle class members

 }

3.2 Member Access in Inheritance:

- Public Members:

 - Public members of the superclass are accessible in the subclass.

 class Animal {

 public void eat() {

 System.out.println("Animal is eating");

 }

 }

 class Dog extends Animal {

 void dogAction() {

 eat(); // Accessing public method from superclass

 }

 }

- Protected Members:

 - Protected members are accessible within the package and by subclasses, promoting a level of

encapsulation.

 class Animal {

 protected void sleep() {

 System.out.println("Animal is sleeping");

 }

 }

 class Dog extends Animal {

 void dogAction() {

 sleep(); // Accessing protected method from superclass

 }

 }

- Default (Package-Private) Members:

 - Members with default access are accessible within the same package but not in subclasses outside

the package.

 class Animal {

 void move() {

 System.out.println("Animal is moving");

 }

 }

 class Dog extends Animal {

 void dogAction() {

 move(); // Accessing default method from superclass

 }

 }

- Private Members:

 - Private members are not directly accessible in subclasses. They are encapsulated within the

superclass.

 class Animal {

 private void breathe() {

 System.out.println("Animal is breathing");

 }

 }

 class Dog extends Animal {

 // Private method breathe() is not accessible in Dog class

 }

Numerical Examples and Coding:

Let's explore numerical examples and code snippets to illustrate inheritance in Java:

1. Single Inheritance:

 class Animal {

 void eat() {

 System.out.println("Animal is eating");

 }

 }

 class Dog extends Animal {

 void bark() {

 System.out.println("Dog is barking");

 }

 }

 public class InheritanceExample {

 public static void main(String[] args) {

 Dog myDog = new Dog();

 myDog.eat(); // Inherited method

 myDog.bark(); // Subclass method

 }

 }

2. Multiple Inheritance (via Interfaces):

 interface Swim {

 void swim();

 }

 class Fish implements Animal, Swim {

 @Override

 public void eat() {

 System.out.println("Fish is eating");

 }

 @Override

 public void swim() {

 System.out.println("Fish is swimming");

 }

 }

3. Multilevel Inheritance:

 class Grandparent {

 void grandparentAction() {

 System.out.println("Grandparent action");

 }

 }

 class Parent extends Grandparent {

 void parentAction() {

 System.out.println("Parent action");

 }

 }

 class Child extends Parent {

 void childAction() {

 System.out.println("Child action");

 }

 }

4. Hierarchical Inheritance:

 class Vehicle {

 void move() {

 System.out.println("Vehicle is moving");

 }

 }

 class Car extends Vehicle {

 void carAction() {

 System.out.println("Car action");

 }

 }

 class Motorcycle extends Vehicle {

 void motorcycleAction() {

 System.out.println("Motorcycle action");

 }

 }

Conclusion:

Inheritance in Java is a powerful mechanism that promotes code reuse and the creation of modular,

extensible code. Different types of inheritance, including single, multiple (via interfaces), multilevel,

and hierarchical, provide flexibility in designing class hierarchies. Understanding member access,

including public, protected, default, and private members, is crucial for proper encapsulation and

managing the visibility of class members. By leveraging inheritance, developers can build scalable

and maintainable Java applications with a hierarchical structure that reflects the relationships between

various entities in the system.

3.3 Using `super` Keyword to Call Superclass Constructors:

In Java, the `super` keyword is used to refer to the superclass (parent class) members, including fields,

methods, and constructors. When dealing with constructors, `super()` is used to invoke the constructor

of the superclass. This is particularly useful in scenarios where the subclass wants to initialize its own

attributes along with those inherited from the superclass.

Explanation:

class Animal {

 int age;

 Animal(int age) {

 this.age = age;

 }

}

class Dog extends Animal {

 String breed;

 Dog(int age, String breed) {

 super(age); // Calling the constructor of the superclass

 this.breed = breed;

 }

}

In this example, the `Dog` class extends the `Animal` class. The `Dog` class has its own field `breed`,

and the `super(age)` call ensures that the `age` attribute from the `Animal` class is also initialized.

3.4 Creating a Multilevel Hierarchy:

Multilevel inheritance in Java involves a chain of inheritance where a subclass extends another class,

and another subclass extends the previous subclass. This creates a hierarchical structure with multiple

levels.

Explanation:

class Animal {

 void eat() {

 System.out.println("Animal is eating");

 }

}

class Mammal extends Animal {

 void walk() {

 System.out.println("Mammal is walking");

 }

}

class Dog extends Mammal {

 void bark() {

 System.out.println("Dog is barking");

 }

}

In this example, `Animal` is the base class, `Mammal` inherits from `Animal`, and `Dog` inherits

from `Mammal`. This creates a multilevel hierarchy where `Dog` has access to both `eat()` and

`walk()` methods.

3.5 Method Overriding:

Method overriding is a feature in Java that allows a subclass to provide a specific implementation for

a method that is already defined in its superclass. This enables polymorphism, where a reference to

the superclass can be used to refer to objects of the subclass.

Explanation:

class Animal {

 void sound() {

 System.out.println("Animal makes a sound");

 }

}

class Dog extends Animal {

 @Override

 void sound() {

 System.out.println("Dog barks");

 }

}

Here, the `Dog` class overrides the `sound()` method defined in the `Animal` class. When an object of

type `Dog` calls the `sound()` method, the overridden version in the `Dog` class is executed.

3.6 Dynamic Method Dispatch:

Dynamic method dispatch is a mechanism where the correct method to be called is determined at

runtime based on the type of the object. It is a crucial aspect of polymorphism in Java.

Explanation:

class Animal {

 void sound() {

 System.out.println("Animal makes a sound");

 }

}

class Dog extends Animal {

 @Override

 void sound() {

 System.out.println("Dog barks");

 }

}

public class TestPolymorphism {

 public static void main(String[] args) {

 Animal myAnimal = new Dog(); // Upcasting

 myAnimal.sound(); // Calls the overridden sound() in Dog

 }

}

In this example, an object of type `Dog` is assigned to a variable of type `Animal`. During runtime,

the `sound()` method of the `Dog` class is called, demonstrating dynamic method dispatch.

3.7 Using Abstract Classes:

An abstract class in Java is a class that cannot be instantiated and may contain abstract methods,

which are methods without a body. Subclasses must provide implementations for these abstract

methods.

Explanation:

abstract class Shape {

 abstract void draw(); // Abstract method

 void display() {

 System.out.println("Displaying shape");

 }

}

class Circle extends Shape {

 @Override

 void draw() {

 System.out.println("Drawing circle");

 }

}

In this example, `Shape` is an abstract class with an abstract method `draw()`. The `Circle` class

extends `Shape` and provides an implementation for the `draw()` method.

3.8 Using `final` Keyword:

The `final` keyword in Java is used to restrict the modification of classes, methods, and variables. A

`final` class cannot be inherited, a `final` method cannot be overridden, and a `final` variable cannot

be reassigned.

Explanation:

final class ImmutableClass {

 // Class definition

}

class MyClass {

 final int constantValue = 10; // Final variable

 final void display() {

 // Method with final keyword

 }

}

In this example, `ImmutableClass` is declared as `final`, preventing any further inheritance. The

`constantValue` variable and the `display()` method are marked as `final`, indicating that their values

or implementations cannot be changed.

Conclusion:

In this comprehensive explanation, we covered essential Java concepts, including the use of the

`super` keyword to call superclass constructors, creating a multilevel hierarchy, method overriding,

dynamic method dispatch, using abstract classes, and employing the `final` keyword. Understanding

these concepts is fundamental for developing robust and flexible Java applications. The provided

theoretical explanations, numerical examples, and code snippets offer a practical understanding of

how these concepts are implemented and utilized in real-world scenarios. Developers can leverage

these concepts to enhance code organization, promote code reuse, and build more maintainable and

scalable software.

M.Sc. (Computer Science)

SEMESTER-3

COURSE: Web Programming
UNIT 4: I/O BASICS

4.1 Streams and the predefined streams

4.2 Reading console Input

4.3 Writing console Output

4.4 Arrays and Strings: One-dimensional and two-dimensional Arrays

4.5 String Handling using String, String Buffer class, and String Functions

4.1 Streams in Java:
Streams in Java are abstractions that provide a consistent way to perform input and output operations.

They are classified into two types: input streams for reading data and output streams for writing data.

a. Input Streams (`System.in`):

`System.in` represents the standard input stream, typically connected to the keyboard. Reading from

the console can be done using classes like `Scanner` or `BufferedReader`.

Example:

import java.util.Scanner;

public class ConsoleInputExample {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 System.out.print("Enter your name: ");

 String name = scanner.nextLine();

 System.out.println("Hello, " + name + "!");

 scanner.close();

 }

}

In this example, `Scanner` is used to read input from the console. The `nextLine()` method reads the

entire line entered by the user.

b. Output Streams (`System.out`):

`System.out` represents the standard output stream, usually connected to the console. Writing to the

console is done using methods like `println()`.

Example:

public class ConsoleOutputExample {

 public static void main(String[] args) {

 String message = "Hello, World!";

 System.out.println(message);

 }

}

The `println()` method prints the specified message to the console, followed by a newline character.

4.2 Reading Console Input in Java:

To read console input in Java, you can use the `Scanner` class. The `Scanner` class is part of the

`java.util` package, and it provides methods to read various types of data from the console.

Here is a simple example of reading a string from the console:

import java.util.Scanner;

public class ConsoleInputExample {

 public static void main(String[] args) {

 // Create a Scanner object to read input from the console

 Scanner scanner = new Scanner(System.in);

 // Prompt the user to enter a string

 System.out.print("Enter a string: ");

 // Read the entered string

 String userInput = scanner.nextLine();

 // Display the entered string

 System.out.println("You entered: " + userInput);

 // Close the Scanner to avoid resource leaks

 scanner.close();

 }

}

4.3 Writing Console Output in Java:

To write console output in Java, you can use the `System.out.println` or `System.out.print` methods.

These methods are part of the `System` class and are used to print text to the console.

Here is a simple example of writing output to the console:

public class ConsoleOutputExample {

 public static void main(String[] args) {

 // Display a message using println

 System.out.println("This is a simple console output example.");

 // Display multiple messages without moving to the next line using print

 System.out.print("Hello, ");

 System.out.print("world!");

 // Print an empty line

 System.out.println();

 // Display numeric values

 int number = 42;

 double pi = 3.14;

 System.out.println("Number: " + number + ", Pi: " + pi);

 }

}

4.4 Arrays and Strings:

1. One-dimensional Arrays:

A one-dimensional array in Java is a collection of elements of the same type arranged in a linear

order.

a. Declaration and Initialization:

int[] numbers = new int[5];

numbers[0] = 1;

numbers[1] = 2;

// ...

// Shortened Syntax

int[] numbers = {1, 2, 3, 4, 5};

In Java, arrays are zero-indexed, meaning the first element is at index 0.

b. Accessing Elements:

for (int i = 0; i < numbers.length; i++) {

 System.out.println(numbers[i]);

}

The `length` property of an array provides the number of elements it contains.

2. Two-dimensional Arrays:

A two-dimensional array is an array of arrays, creating a grid-like structure.

a. Declaration and Initialization:

int[][] matrix = new int[3][3];

matrix[0][0] = 1;

matrix[0][1] = 2;

// ...

// Shortened Syntax

int[][] matrix = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};

b. Accessing Elements:

for (int i = 0; i < matrix.length; i++) {

 for (int j = 0; j < matrix[i].length; j++) {

 System.out.print(matrix[i][j] + " ");

 }

 System.out.println();

}

Nested loops are used to iterate through each element in a two-dimensional array.

4.5 String Handling:

a. Using `String` Class:

The `String` class in Java represents a sequence of characters and is immutable.

Example:

String text = "Hello, Java!";

// Length of the string

int length = text.length(); // Returns 13

// Concatenation

String greeting = text.concat(" Welcome!"); // "Hello, Java! Welcome!"

// Substring

String subString = text.substring(0, 5); // "Hello"

// Comparison

boolean isEqual = text.equals("Hello, Java!"); // true

// Searching

int index = text.indexOf("Java"); // Returns the index of "Java" in the string

b. Using `StringBuffer` Class:

The `StringBuffer` class in Java is mutable, allowing modifications to the content.

Example:

StringBuffer buffer = new StringBuffer("Hello");

// Append

buffer.append(", Java!"); // "Hello, Java!"

// Insert

buffer.insert(5, " World"); // "Hello World, Java!"

// Delete

buffer.delete(0, 5); // Deletes "Hello"

// Reverse

buffer.reverse(); // Reverses the string

``` 

 

`StringBuffer` provides methods for modifying the content of the string. 

 

Conclusion: 

 

In this detailed exploration, we covered the foundational concepts of I/O operations, arrays, and 

strings in Java. Understanding I/O streams, array manipulation, and string handling is essential for 

developing versatile and interactive Java applications. The provided examples and code snippets aim 

to reinforce these concepts, providing a practical understanding for developers. Leveraging these 

fundamental skills will enable developers to build efficient, readable, and maintainable Java code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M.Sc. (Computer Science) 

SEMESTER-3 

COURSE: Web Programming 
UNIT 5: PACKAGES 

5.1 Types of packages 

5.2 Defining a package 

5.3 Importing packages 

5.4 Access protection Interfaces: Defining an Interface 

5.5 Implementing Interfaces and Variables in Interfaces 

5.6 Achieving multiple inheritance using interfaces 

5.7 Interface and Abstract classes 
 

 

Introduction to Packages: 

 

In Java, packages are used to organize classes and interfaces into a hierarchical structure, providing a 

way to encapsulate code and prevent naming conflicts. They contribute to code organization, 

reusability, and maintenance. 

 

5.1 Types of Packages: 
 

a. Built-in Packages: 

Java provides a set of built-in packages, such as `java.lang`, `java.util`, and `java.io`. These packages 

contain fundamental classes and utilities that are commonly used in Java programs. 

 

b. User-Defined Packages: 

Developers can create their own packages to organize classes related to specific functionalities or 

modules within a project. This promotes better code structure and modularity. 

 
5.2 Defining a Package: 

 

To define a package in Java, you include a `package` statement at the beginning of your Java source 

file. The package statement is followed by the package name. 

 

1. Defining a Package Example: 

 

Suppose we want to create a package named `com.example.util` for utility classes. 

 



// File: UtilClass.java 

package com.example.util; 

 

public class UtilClass { 

    // Class implementation 

} 

 

This `UtilClass` is now part of the `com.example.util` package. 

 

5.3 Importing Packages: 
 

In Java, the `import` statement is used to bring classes or entire packages into scope, allowing their 

usage without fully qualified names. 

 

1. Importing a Class Example: 

 

// File: MyClass.java 

import com.example.util.UtilClass; 

 

public class MyClass { 

    public static void main(String[] args) { 

        UtilClass util = new UtilClass(); 

        // Use util object 

    } 

} 

 

Here, `UtilClass` from the `com.example.util` package is imported and used within the `MyClass` 

class. 

 

2. Importing an Entire Package Example: 

// File: AnotherClass.java 

import com.example.util.*; 

 

public class AnotherClass { 

    public static void main(String[] args) { 

        UtilClass util = new UtilClass(); 

        // Use util object 

    } 

} 

 

The `*` wildcard imports all classes from the `com.example.util` package. 

 

5.4 Access Protection: 
 

Access protection in Java is managed through access modifiers (`public`, `protected`, default, and 

`private`). These modifiers determine the visibility of classes, methods, and variables. 

 

1. Access Modifiers: 

 

a. Public: 

Public members are accessible from any class. 

 

b. Protected: 

Protected members are accessible within the same package and by subclasses (even if they are in a 



different package). 

 

c. Default (Package-Private): 

Members with default access are accessible only within the same package. 

 

d. Private: 

Private members are accessible only within the same class. 

 

2. Access Protection Example: 

 

Consider a package `com.example.access` with two classes, `ClassA` and `ClassB`. 

 

// File: ClassA.java 

package com.example.access; 

 

public class ClassA { 

    public int publicVar; 

    protected int protectedVar; 

    int defaultVar; 

    private int privateVar; 

} 

 

// File: ClassB.java 

package com.example.access; 

 

public class ClassB extends ClassA { 

    public static void main(String[] args) { 

        ClassA a = new ClassA(); 

        a.publicVar = 1;       // Accessible 

        a.protectedVar = 2;    // Accessible within the same package or subclasses 

        a.defaultVar = 3;      // Accessible within the same package 

        // a.privateVar = 4;   // Not accessible 

 

        ClassB b = new ClassB(); 

        b.protectedVar = 5;    // Accessible because ClassB is a subclass 

    } 

} 

 

In this example, `ClassA` has members with different access modifiers. `ClassB` is a subclass of 

`ClassA` and can access protected members. 

 

 

5.5 Introduction to Interfaces: 
 

Interfaces in object-oriented programming provide a way to define a contract that classes must adhere 

to. They serve as blueprints for classes, specifying a set of methods that implementing classes must 

provide. Interfaces play a pivotal role in achieving abstraction, multiple inheritance, and ensuring a 

consistent structure in diverse class hierarchies. 

 

Defining an Interface: 

 

An interface is typically declared using a specific keyword in a programming language. For instance, 

in Java: 

 



interface Shape { 

    double calculateArea(); 

    void display(); 

} 

 

Here, the `Shape` interface declares two methods: `calculateArea()` and `display()`. Any class that 

implements this interface must furnish concrete implementations for these methods. 

 

Implementing Interfaces: 

 

To implement an interface in a class, the `implements` keyword is used: 

 

class Circle implements Shape { 

    double radius; 

 

    public Circle(double radius) { 

        this.radius = radius; 

    } 

 

    public double calculateArea() { 

        return Math.PI * radius * radius; 

    } 

 

    public void display() { 

        System.out.println("Circle with radius " + radius); 

    } 

} 

 

The `Circle` class, in this case, implements the `Shape` interface, providing concrete definitions for 

the methods specified in the interface. 

 

Variables in Interfaces: 

 

Interfaces can also include variables, which are implicitly `public`, `static`, and `final`. These 

variables act as constants shared among all classes implementing the interface: 

 

interface Shape { 

    double PI = 3.14159; 

    double calculateArea(); 

    void display(); 

} 

 

Now, any class implementing `Shape` can access the constant using `Shape.PI`. 

 

5.6 Achieving Multiple Inheritance Using Interfaces: 
 

Interfaces facilitate the achievement of multiple inheritance, allowing a class to implement multiple 

interfaces. This is particularly beneficial in scenarios where a class needs to inherit functionalities 

from different sources: 

 

class ColoredCircle implements Shape, Color { 

    // ... (Implementation details) 

} 

 



Here, `ColoredCircle` implements both the `Shape` and `Color` interfaces, inheriting behaviors from 

both. 

 

5.7 Interface and Abstract Classes: 
 

While interfaces provide a way to achieve abstraction and multiple inheritance, abstract classes also 

contribute to these goals. Abstract classes can contain a mix of abstract and concrete methods: 

 

abstract class AbstractShape { 

    double PI = 3.14159; 

 

    void displayMessage() { 

        System.out.println("This is a shape."); 

    } 

 

    abstract double calculateArea(); 

} 

 

Classes can extend this abstract class, inheriting the constant and concrete method while providing 

implementations for the abstract method. 

 

Conclusion: 

 

Interfaces, with their ability to define contracts and support multiple inheritance, are a crucial tool in 

designing flexible and maintainable object-oriented systems. By using interfaces, developers can 

create modular and extensible code, promoting code reuse and ensuring a consistent structure across 

different classes. The combination of interfaces and abstract classes provides a versatile toolkit for 

building robust and scalable software architectures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M.Sc. (Computer Science) 

SEMESTER-3 

COURSE: Web Programming 
UNIT 6: EXCEPTION HANDLING 

6.1 Java Exception handling model 

6.2 Types of exception 

6.3 Using Try and catch 

6.4 Multiple Try and Catch clauses 

6.5 Nested Try statements 

6.6 Finally block 

6.7 User defined exceptions 
 

 

6.1 Exception Handling in Java: 
 

Exception handling is a crucial aspect of Java programming that deals with runtime errors and 

exceptional conditions. It helps in writing robust and fault-tolerant code by providing a systematic 

way to handle unexpected situations. 

 

Java Exception Handling Model: 

 
In Java, exceptions are objects representing errors that can occur during program execution. The 

exception handling model involves the following key components: 

 

- Try and Catch Blocks: The `try` block encloses a section of code where exceptions might occur. The 

`catch` block catches and handles specific exceptions that may arise within the `try` block. 

 

- Multiple Try and Catch Clauses: A single `try` block can have multiple `catch` blocks to handle 

different types of exceptions independently. 

 

- Nested Try Statements: `try` blocks can be nested within each other, allowing for more granular 

exception handling. 

 



- Finally Block: The `finally` block contains code that will be executed whether an exception occurs 

or not. It is useful for releasing resources or performing cleanup operations. 

 

- User-Defined Exceptions: Java allows developers to create their own exception classes, extending 

the standard exception classes to represent application-specific error conditions. 

 

6.2 Types of Exceptions: 
 

Java categorizes exceptions into two main types: 

 

1. Checked Exceptions: These are exceptions that the compiler forces you to handle explicitly. They 

extend the `Exception` class. Examples include `IOException` and `ClassNotFoundException`. 

 

2. Unchecked Exceptions: Also known as runtime exceptions, these exceptions extend the 

`RuntimeException` class. They are not checked by the compiler, and it is not mandatory to handle 

them. Examples include `NullPointerException` and `ArrayIndexOutOfBoundsException`. 

 

6.3 Using Try and Catch: 
 

Here's a simple example demonstrating the use of `try` and `catch` blocks to handle a potential 

division by zero exception: 

 

public class ExceptionHandlingExample { 

    public static void main(String[] args) { 

        int numerator = 10; 

        int denominator = 0; 

 

        try { 

            int result = numerator / denominator; 

            System.out.println("Result: " + result); 

        } catch (ArithmeticException e) { 

            System.err.println("Error: " + e.getMessage()); 

        } 

    } 

} 

 

In this example, if the denominator is zero, an `ArithmeticException` will be thrown, and the catch 

block will handle the exception, preventing the program from terminating abruptly. 

 

6.4 Multiple Try and Catch Clauses: 
 

public class MultipleCatchExample { 

    public static void main(String[] args) { 

        try { 

            String str = null; 

            System.out.println(str.length());  // This will throw a NullPointerException 

        } catch (NullPointerException e) { 

            System.err.println("NullPointerException: " + e.getMessage()); 

        } catch (Exception e) { 

            System.err.println("Generic Exception: " + e.getMessage()); 

        } 

    } 

} 



 

In this example, the `NullPointerException` is caught by the first `catch` block. If a more generic 

exception handling is required, you can add a catch block with the `Exception` type. 

 

6.5 Nested Try Statements: 
 

public class NestedTryExample { 

    public static void main(String[] args) { 

        try { 

            int[] arr = {1, 2, 3}; 

 

            try { 

                System.out.println(arr[5]);  // This will throw an ArrayIndexOutOfBoundsException 

            } catch (ArrayIndexOutOfBoundsException e) { 

                System.err.println("Inner Catch: " + e.getMessage()); 

            } 

 

            System.out.println("This statement will be executed despite the inner exception."); 

        } catch (Exception e) { 

            System.err.println("Outer Catch: " + e.getMessage()); 

        } 

    } 

} 

 

Here, the outer `catch` block handles any exceptions that occur within the nested `try` block. 

 

6.6 Finally Block: 
 

public class FinallyBlockExample { 

    public static void main(String[] args) { 

        try { 

            // Code that may throw exceptions 

            System.out.println("Try Block"); 

        } catch (Exception e) { 

            System.err.println("Catch Block: " + e.getMessage()); 

        } finally { 

            // Code in the finally block will always execute 

            System.out.println("Finally Block"); 

        } 

    } 

} 

 

The `finally` block is useful for cleanup operations or releasing resources, and it always gets executed 

whether an exception occurs or not. 

 

6.7 User-Defined Exceptions: 
 

class CustomException extends Exception { 

    public CustomException(String message) { 

        super(message); 

    } 

} 

 



public class UserDefinedExceptionExample { 

    public static void main(String[] args) { 

        try { 

            throw new CustomException("This is a custom exception."); 

        } catch (CustomException e) { 

            System.err.println("Custom Exception Caught: " + e.getMessage()); 

        } 

    } 

} 

 

Here, `CustomException` is a user-defined exception class that extends the `Exception` class. The 

program throws and catches an instance of this custom exception. 

 

In conclusion, Java's exception handling mechanisms provide a robust framework for dealing with 

runtime errors and exceptional conditions. By using `try`, `catch`, `finally`, and user-defined 

exceptions, developers can create more reliable and fault-tolerant applications. 

 

Exception Handling in Java with More Examples: 

 

Let's delve deeper into Java's exception handling model with additional examples to illustrate various 

aspects of handling exceptions. 

 

1. Checked Exception: 

   - Checked exceptions are those that the compiler forces you to handle. Let's consider an example 

using `FileReader`: 

 

import java.io.FileReader; 

import java.io.IOException; 

 

public class CheckedExceptionExample { 

    public static void main(String[] args) { 

        try { 

            FileReader fileReader = new FileReader("example.txt"); 

            // Read from the file 

            fileReader.close(); 

        } catch (IOException e) { 

            System.err.println("IOException: " + e.getMessage()); 

        } 

    } 

} 

 

In this example, we use `FileReader` which throws `IOException`. The `try` block attempts to read 

from the file, and the `catch` block handles any potential `IOException`. 

 

2. Unchecked Exception: 

   - Unchecked exceptions, also known as runtime exceptions, are not enforced by the compiler. An 

example using `ArrayIndexOutOfBoundsException`: 

 

public class UncheckedExceptionExample { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3}; 

        try { 

            System.out.println(arr[5]);  // This will throw an ArrayIndexOutOfBoundsException 

        } catch (ArrayIndexOutOfBoundsException e) { 

            System.err.println("ArrayIndexOutOfBoundsException: " + e.getMessage()); 



        } 

    } 

} 

 

Here, the `try` block attempts to access an index that is out of bounds, resulting in an 

`ArrayIndexOutOfBoundsException`. 

 

3. Multiple Catch Clauses: 

   - Handling multiple types of exceptions within the same `try` block: 

 

public class MultipleCatchExample { 

    public static void main(String[] args) { 

        try { 

            String str = null; 

            System.out.println(str.length());  // This will throw a NullPointerException 

        } catch (NullPointerException e) { 

            System.err.println("NullPointerException: " + e.getMessage()); 

        } catch (Exception e) { 

            System.err.println("Generic Exception: " + e.getMessage()); 

        } 

    } 

} 

 

In this example, the first `catch` block handles `NullPointerException`, and the second one provides a 

more generic catch-all for any other exceptions. 

 

4. Nested Try Statements: 

   - Demonstrating nested `try` blocks: 

 

public class NestedTryExample { 

    public static void main(String[] args) { 

        try { 

            int[] arr = {1, 2, 3}; 

 

            try { 

                System.out.println(arr[5]);  // This will throw an ArrayIndexOutOfBoundsException 

            } catch (ArrayIndexOutOfBoundsException e) { 

                System.err.println("Inner Catch: " + e.getMessage()); 

            } 

 

            System.out.println("This statement will be executed despite the inner exception."); 

        } catch (Exception e) { 

            System.err.println("Outer Catch: " + e.getMessage()); 

        } 

    } 

} 

 

In this example, the outer `catch` block handles any exceptions that occur within the nested `try` 

block. 

 

5. Finally Block: 

   - Using `finally` for cleanup operations: 

 

public class FinallyBlockExample { 

    public static void main(String[] args) { 



        try { 

            // Code that may throw exceptions 

            System.out.println("Try Block"); 

        } catch (Exception e) { 

            System.err.println("Catch Block: " + e.getMessage()); 

        } finally { 

            // Code in the finally block will always execute 

            System.out.println("Finally Block"); 

        } 

    } 

} 

 

The `finally` block is executed whether an exception occurs or not, making it suitable for cleanup 

operations. 

 

6. User-Defined Exception: 

   - Creating a custom exception class: 

 

class CustomException extends Exception { 

    public CustomException(String message) { 

        super(message); 

    } 

} 

 

public class UserDefinedExceptionExample { 

    public static void main(String[] args) { 

        try { 

            throw new CustomException("This is a custom exception."); 

        } catch (CustomException e) { 

            System.err.println("Custom Exception Caught: " + e.getMessage()); 

        } 

    } 

} 

 

In this example, `CustomException` is a user-defined exception class extending the `Exception` class. 

The program throws and catches an instance of this custom exception. 

 

Conclusion 

In conclusion, these examples provide a comprehensive overview of Java's exception handling 

mechanisms, covering checked and unchecked exceptions, multiple catch clauses, nested try 

statements, the finally block, and user-defined exceptions. Effective use of exception handling 

contributes to the creation of robust and reliable Java applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

M.Sc. (Computer Science) 

SEMESTER-3 

COURSE: Web Programming 
UNIT 7: MULTI-THREADED PROGRAMMING 

7.1 The Java Thread model 

7.2 The Thread class and Runnable interface 

7.3 Creating a Thread using Runnable Interface and extending Thread 

7.4 Creating Multiple Threads 

7.5 Thread Priorities 

7.6 Synchronizations: Methods, Statements, Inter Thread Communication, 

Deadlock, Suspending, Resuming and Stopping Threads. 
 

Multi-threaded Programming in Java: 

 

Multi-threaded programming involves the concurrent execution of multiple threads within a program. 

In Java, threads are implemented through the `Thread` class and the `Runnable` interface. This 

approach allows for parallel execution of tasks, improving performance in scenarios where certain 

operations can be carried out simultaneously. 

 

7.1 Java Thread Model: 

 
Java's thread model is based on a two-tier architecture: the user-level threads (also known as 

application or green threads) and the kernel-level threads managed by the underlying operating 

system. Java threads are lightweight, and the Java Virtual Machine (JVM) takes care of mapping user-

level threads to kernel-level threads. 

 

 

7.2 Thread Class and Runnable Interface: 
 

In Java, you can create threads by extending the `Thread` class or implementing the `Runnable` 

interface. The `Thread` class provides the basic functionality for creating and managing threads, while 

the `Runnable` interface allows you to define the code that will be executed by the thread. 



 

7.3 Creating a Thread using Runnable Interface: 
 

Here's an example of creating a thread by implementing the `Runnable` interface: 

class MyRunnable implements Runnable { 

    public void run() { 

        for (int i = 1; i <= 5; i++) { 

            System.out.println(Thread.currentThread().getId() + " Value " + i); 

        } 

    } 

} 

 

public class RunnableExample { 

    public static void main(String args[]) { 

        Thread t1 = new Thread(new MyRunnable()); 

        Thread t2 = new Thread(new MyRunnable()); 

         

        t1.start(); 

        t2.start(); 

    } 

} 

 

In this example, the `MyRunnable` class implements the `Runnable` interface, and the `run` method 

contains the code that will be executed when the thread runs. We create two threads (`t1` and `t2`) by 

passing instances of `MyRunnable` to the `Thread` constructor. The `start()` method is called to 

initiate the execution of the threads. 

 

Creating a Thread by Extending Thread Class: 

 

Here's an example of creating a thread by extending the `Thread` class: 

 

class MyThread extends Thread { 

    public void run() { 

        for (int i = 1; i <= 5; i++) { 

            System.out.println(Thread.currentThread().getId() + " Value " + i); 

        } 

    } 

} 

 

public class ThreadExample { 

    public static void main(String args[]) { 

        MyThread t1 = new MyThread(); 

        MyThread t2 = new MyThread(); 

         

        t1.start(); 

        t2.start(); 

    } 

} 

 

In this example, the `MyThread` class extends the `Thread` class, and the `run` method contains the 

code to be executed by the thread. We create two threads (`t1` and `t2`) by instantiating `MyThread` 

and then calling the `start()` method to begin the thread execution. 

 

Thread Synchronization: 



 

When multiple threads access shared resources concurrently, it can lead to data inconsistency or 

unexpected results. Java provides synchronization mechanisms, such as the `synchronized` keyword 

and locks, to ensure that only one thread can access critical sections of code at a time. 

 

Here's a simple example using synchronization to avoid data inconsistency: 

 

class Counter { 

    private int count = 0; 

 

    public synchronized void increment() { 

        count++; 

    } 

 

    public int getCount() { 

        return count; 

    } 

} 

 

class MyRunnable implements Runnable { 

    private Counter counter; 

 

    public MyRunnable(Counter counter) { 

        this.counter = counter; 

    } 

 

    public void run() { 

        for (int i = 0; i < 10000; i++) { 

            counter.increment(); 

        } 

    } 

} 

 

public class SynchronizationExample { 

    public static void main(String[] args) throws InterruptedException { 

        Counter counter = new Counter(); 

        Thread t1 = new Thread(new MyRunnable(counter)); 

        Thread t2 = new Thread(new MyRunnable(counter)); 

 

        t1.start(); 

        t2.start(); 

 

        t1.join(); 

        t2.join(); 

 

        System.out.println("Final Count: " + counter.getCount()); 

    } 

} 

 

In this example, the `Counter` class has a synchronized `increment` method to ensure that only one 

thread can increment the count at a time. The `SynchronizationExample` class creates two threads that 

share the same `Counter` instance. 

 

These examples provide a foundational understanding of multi-threaded programming in Java, 

covering the creation of threads using both the `Runnable` interface and the `Thread` class, as well as 



addressing synchronization concerns when multiple threads access shared resources. 

 

7.4 Creating Multiple Threads: 
Creating multiple threads in Java can be achieved by either extending the `Thread` class or 

implementing the `Runnable` interface. 

 

class MyThread extends Thread { 

    public void run() { 

        System.out.println("Thread is running..."); 

    } 

} 

 

public class MultipleThreadsExample { 

    public static void main(String[] args) { 

        MyThread thread1 = new MyThread(); 

        MyThread thread2 = new MyThread(); 

         

        thread1.start(); 

        thread2.start(); 

    } 

} 

 

In this example, two threads (`thread1` and `thread2`) are created by extending the `Thread` class, and 

each thread runs independently when started. 

 

7.5 Thread Priorities: 
Java threads can have priorities ranging from 1 to 10, where 1 is the lowest priority and 10 is the 

highest. The default priority is 5. 

 

class PriorityThread extends Thread { 

    public void run() { 

        System.out.println("Thread with priority " + Thread.currentThread().getPriority() + " is 

running..."); 

    } 

} 

 

public class ThreadPriorityExample { 

    public static void main(String[] args) { 

        PriorityThread thread1 = new PriorityThread(); 

        PriorityThread thread2 = new PriorityThread(); 

         

        thread1.setPriority(Thread.MIN_PRIORITY);  // Set minimum priority (1) 

        thread2.setPriority(Thread.MAX_PRIORITY);  // Set maximum priority (10) 

         

        thread1.start(); 

        thread2.start(); 

    } 

} 

 

Here, `setPriority` is used to set the priority of each thread. 

 

7.6 Synchronization: 
Synchronization is crucial to avoid data inconsistency when multiple threads access shared resources. 



It can be achieved using the `synchronized` keyword. 

 

- Synchronized method: 

 

class Counter { 

    private int count = 0; 

 

    public synchronized void increment() { 

        count++; 

    } 

 

    public int getCount() { 

        return count; 

    } 

} 

 

- Synchronized block: 

 

class Counter { 

    private int count = 0; 

 

    public void increment() { 

        synchronized (this) { 

            count++; 

        } 

    } 

 

    public int getCount() { 

        return count; 

    } 

} 

 

Both examples ensure that only one thread can increment the count at a time. 

 

Inter-Thread Communication: 

Inter-thread communication is the mechanism by which threads can communicate with each other. 

`wait()`, `notify()`, and `notifyAll()` methods are used for this purpose. 

 

class Message { 

    private String message; 

 

    public synchronized String getMessage() { 

        return message; 

    } 

 

    public synchronized void setMessage(String message) { 

        this.message = message; 

        notify();  // Notify waiting threads 

    } 

} 

 

class Producer extends Thread { 

    private Message message; 

 

    public Producer(Message message) { 



        this.message = message; 

    } 

 

    public void run() { 

        synchronized (message) { 

            message.setMessage("Hello from Producer!"); 

        } 

    } 

} 

 

class Consumer extends Thread { 

    private Message message; 

 

    public Consumer(Message message) { 

        this.message = message; 

    } 

 

    public void run() { 

        synchronized (message) { 

            while (message.getMessage() == null) { 

                try { 

                    message.wait();  // Wait for notification 

                } catch (InterruptedException e) { 

                    e.printStackTrace(); 

                } 

            } 

            System.out.println("Message received: " + message.getMessage()); 

        } 

    } 

} 

 

public class InterThreadCommunicationExample { 

    public static void main(String[] args) { 

        Message message = new Message(); 

        Producer producer = new Producer(message); 

        Consumer consumer = new Consumer(message); 

 

        producer.start(); 

        consumer.start(); 

    } 

} 

 

Here, `Producer` sets a message, and `Consumer` waits until a message is available. 

 

Deadlock: 

A deadlock occurs when two or more threads are blocked forever, each waiting for the other to release 

a lock. 

 

public class DeadlockExample { 

    static class Resource { 

        synchronized void method1(Resource resource) { 

            resource.method2(this); 

        } 

 

        synchronized void method2(Resource resource) { 



            // Some operations 

        } 

    } 

 

    public static void main(String[] args) { 

        Resource resource1 = new Resource(); 

        Resource resource2 = new Resource(); 

 

        new Thread(() -> resource1.method1(resource2)).start(); 

        new Thread(() -> resource2.method1(resource1)).start(); 

    } 

} 

 

In this example, two threads each call a method that synchronizes on the other's instance, leading to a 

deadlock. 

 

 

Suspending, Resuming, and Stopping Threads: 

The `suspend()`, `resume()`, and `stop()` methods are deprecated due to potential issues. Instead, it is 

recommended to use flags or other mechanisms to control thread execution. 

 

class MyThread extends Thread { 

    private volatile boolean suspended = false; 

 

    public void run() { 

        while (true) { 

            if (!suspended) { 

                // Perform operations 

            } 

        } 

    } 

 

    public void suspendThread() { 

        suspended = true; 

    } 

 

    public void resumeThread() { 

        suspended = false; 

    } 

 

    public void stopThread() { 

        // Perform cleanup operations 

        interrupt(); 

    } 

} 

 

In this example, a `volatile` flag is used to suspend and resume the thread. The `stopThread` method 

interrupts the thread, allowing it to perform cleanup operations. 

 

 

Conclusion 

These examples cover creating multiple threads, setting thread priorities, synchronization, inter-thread 

communication, handling deadlocks, and managing thread execution. Keep in mind that proper 

synchronization and coordination are crucial for the correctness of multi-threaded programs. 

 



M.Sc. (Computer Science) 

SEMESTER-3 

COURSE: Web Programming 
UNIT 8: APPLET PROGRAMMING 

8.1 Introduction 

8.2 Types of applet 

8.3 Life Cycle 

8.4 Incorporating an applet into web page using Applet Tag 

8.5 Running applets 

8.6 Using Graphics class and its methods to draw lines, rectangles, circles, 

ellipses, arcs and polygons 
 

 

8.1 Introduction: 
An applet is a small Java program that runs within a web browser. It is a client-side technology used 

to enhance the functionality of web pages. Applets are written in Java and are typically embedded in 

HTML pages. 

 

8.2 Types of Applets: 
There are two types of applets in Java: 

 

1. Applet Based on Applet Class (Heavyweight Applet): 

   - This type of applet extends the `java.applet.Applet` class. 

   - It provides a graphical user interface. 

   - These applets are heavyweight because they use the native GUI components of the operating 

system. 

   

   import java.applet.Applet; 

   import java.awt.Graphics; 

 

   public class HelloWorldApplet extends Applet { 

       public void paint(Graphics g) { 

           g.drawString("Hello, World!", 20, 20); 

       } 

   } 

 

2. Applet Based on JApplet Class (Lightweight Applet): 

   - This type of applet extends the `javax.swing.JApplet` class. 

   - It provides a more modern and versatile GUI. 

   - These applets are lightweight because they use Swing components. 

 

   import javax.swing.JApplet; 

   import java.awt.Graphics; 

 

   public class HelloWorldSwingApplet extends JApplet { 

       public void paint(Graphics g) { 

           g.drawString("Hello, World!", 20, 20); 

       } 

   } 

 



8.3 Life Cycle of an Applet: 
The life cycle of an applet consists of the following methods: 

 

1. `init()`: This method is called when the applet is first loaded. It is used for one-time initialization. 

 

2. `start()`: This method is called after the `init()` method. It is invoked each time the user returns to 

the applet. 

 

3. `stop()`: This method is called when the user leaves the page containing the applet. It can be used to 

stop ongoing processes. 

 

4. `destroy()`: This method is called when the browser shuts down or the applet is removed from the 

page. It is used for cleanup operations. 

 

5. `paint(Graphics g)`: This method is called whenever the applet needs to redraw its contents. It is 

frequently used to display graphics. 

 

8.4 Incorporating an Applet into a Web Page Using the Applet 

Tag: 
To include an applet in an HTML page, you use the `<applet>` tag. Here's an example: 

 

<html> 

    <body> 

        <applet code="HelloWorldApplet.class" width="300" height="300"> 

        </applet> 

    </body> 

</html> 

 

In this example, the `code` attribute specifies the name of the compiled applet class file, and the 

`width` and `height` attributes determine the dimensions of the applet. 

 



 

 

8.5 Running Applets: 
To run an applet, you can use a web browser that supports Java applets, such as Internet Explorer, 

Firefox, or Safari. Ensure that Java is installed on the system, and the browser's Java plugin is 

enabled. 

 

1. Compile the Applet Class: 

   - Use the `javac` command to compile the Java source file: 

 

   javac HelloWorldApplet.java 

 

2. Create an HTML Page: 

   - Create an HTML file that includes the `<applet>` tag. 

 

3. Open the HTML Page in a Browser: 

   - Open the HTML file using a web browser. 

 

   The browser will load the applet and display it within the specified dimensions. 

 

It's important to note that modern web standards have shifted away from using Java applets in favor of 

other technologies like JavaScript and HTML5. Applets may not be supported in some browsers due 

to security concerns, and alternative technologies are recommended for web development. 

 

More Explanation: 

The life cycle of an applet is managed by the browser or applet viewer. Here's a more detailed 

breakdown of each method in the life cycle: 

 

1. `init()`: 

   - The `init()` method is called when the applet is first loaded. It is used for one-time initialization 

tasks, such as setting up GUI components, loading resources, or establishing connections. 

   - Example: 

 

     public void init() { 

         // Initialization code here 

     } 

 

2. `start()`: 

   - The `start()` method is called after the `init()` method. It is invoked each time the user returns to 

the applet or when the browser revisits the applet's page. This method is often used to start threads or 

animations. 

   - Example: 

 

     public void start() { 

         // Start or resume any ongoing processes 

     } 

 

3. `stop()`: 

   - The `stop()` method is called when the user leaves the page containing the applet. It is used to stop 

ongoing processes or animations to conserve system resources. 

   - Example: 

 

     public void stop() { 



         // Stop ongoing processes or animations 

     } 

4. `destroy()`: 

   - The `destroy()` method is called when the browser shuts down or the applet is removed from the 

page. It is used for cleanup operations, such as closing open resources or releasing memory. 

   - Example: 

 

     public void destroy() { 

         // Cleanup operations 

     } 

 

5. `paint(Graphics g)`: 

   - The `paint(Graphics g)` method is called whenever the applet needs to redraw its contents. This 

method is often used to display graphics or update the applet's visual representation. 

   - Example: 

 

     public void paint(Graphics g) { 

         // Draw graphics on the applet's canvas 

     } 

      

 

Incorporating an Applet into a Web Page Using the `<applet>` Tag: 

 

To include an applet in an HTML page, you use the `<applet>` tag. The following attributes are 

commonly used: 

 

- `code`: Specifies the name of the compiled applet class file. 

- `width` and `height`: Determine the dimensions of the applet. 

 

Example HTML code: 

 

<html> 

    <body> 

        <applet code="HelloWorldApplet.class" width="300" height="300"> 

        </applet> 

    </body> 

</html> 

 

Here, the applet class file is specified as "HelloWorldApplet.class," and the applet is given a width 

and height of 300 pixels each. 

 

Running Applets: 

 

1. Compile the Applet Class: 

   - Use the `javac` command to compile the Java source file: 

 

   javac HelloWorldApplet.java 

 

2. Create an HTML Page: 

   - Create an HTML file that includes the `<applet>` tag. Save the HTML file in the same directory as 

the compiled applet class. 

 

   Example HTML file ("index.html"): 

 

   <html> 



       <body> 

           <applet code="HelloWorldApplet.class" width="300" height="300"> 

           </applet> 

       </body> 

   </html> 

 

3. Open the HTML Page in a Browser: 

   - Open the HTML file using a web browser that supports Java applets. Ensure that Java is installed 

on the system, and the browser's Java plugin is enabled. 

 

   The browser will load the applet and display it within the specified dimensions. 

 

It's important to note that Java applets have fallen out of favor in modern web development due to 

security concerns, and major browsers have deprecated or removed support for Java plugins. As an 

alternative, technologies like JavaScript and HTML5 are commonly used for client-side web 

development. 

 

8.6 Using Graphics class and its methods to draw lines, rectangles, 

circles, ellipses, arcs and polygons: 
To draw lines, rectangles, circles, ellipses, arcs, and polygons in Java, you can use the `Graphics` 

class, which is part of the Abstract Window Toolkit (AWT) package. Below are examples 

demonstrating how to use various methods of the `Graphics` class to draw these shapes. For 

simplicity, I'll provide standalone examples for each shape. 

 

1. Drawing Lines: 

 

import java.awt.Graphics; 

import javax.swing.JFrame; 

import javax.swing.JPanel; 

 

class LineDrawing extends JPanel { 

    @Override 

    protected void paintComponent(Graphics g) { 

        super.paintComponent(g); 

        g.drawLine(10, 10, 150, 150); 

    } 

} 

 

public class LineExample { 

    public static void main(String[] args) { 

        JFrame frame = new JFrame("Line Example"); 

        frame.setSize(200, 200); 

        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

        frame.add(new LineDrawing()); 

        frame.setVisible(true); 

    } 

} 

2. Drawing Rectangles: 

 

import java.awt.Graphics; 

import javax.swing.JFrame; 

import javax.swing.JPanel; 

 

class RectangleDrawing extends JPanel { 



    @Override 

    protected void paintComponent(Graphics g) { 

        super.paintComponent(g); 

        g.drawRect(20, 20, 120, 80); 

    } 

} 

 

public class RectangleExample { 

    public static void main(String[] args) { 

        JFrame frame = new JFrame("Rectangle Example"); 

        frame.setSize(200, 200); 

        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

        frame.add(new RectangleDrawing()); 

        frame.setVisible(true); 

    } 

} 

 

3. Drawing Circles: 

 

import java.awt.Graphics; 

import javax.swing.JFrame; 

import javax.swing.JPanel; 

 

class CircleDrawing extends JPanel { 

    @Override 

    protected void paintComponent(Graphics g) { 

        super.paintComponent(g); 

        g.drawOval(20, 20, 80, 80); 

    } 

} 

 

public class CircleExample { 

    public static void main(String[] args) { 

        JFrame frame = new JFrame("Circle Example"); 

        frame.setSize(200, 200); 

        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

        frame.add(new CircleDrawing()); 

        frame.setVisible(true); 

    } 

} 

 

4. Drawing Ellipses: 

 

import java.awt.Graphics; 

import javax.swing.JFrame; 

import javax.swing.JPanel; 

 

class EllipseDrawing extends JPanel { 

    @Override 

    protected void paintComponent(Graphics g) { 

        super.paintComponent(g); 

        g.drawOval(20, 20, 120, 80); 

    } 

} 

 



public class EllipseExample { 

    public static void main(String[] args) { 

        JFrame frame = new JFrame("Ellipse Example"); 

        frame.setSize(200, 200); 

        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

        frame.add(new EllipseDrawing()); 

        frame.setVisible(true); 

    } 

} 

 

5. Drawing Arcs: 

 

import java.awt.Graphics; 

import javax.swing.JFrame; 

import javax.swing.JPanel; 

 

class ArcDrawing extends JPanel { 

    @Override 

    protected void paintComponent(Graphics g) { 

        super.paintComponent(g); 

        g.drawArc(20, 20, 100, 100, 45, 90); 

    } 

} 

 

public class ArcExample { 

    public static void main(String[] args) { 

        JFrame frame = new JFrame("Arc Example"); 

        frame.setSize(200, 200); 

        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

        frame.add(new ArcDrawing()); 

        frame.setVisible(true); 

    } 

} 

 

6. Drawing Polygons: 

 

import java.awt.Graphics; 

import java.awt.Polygon; 

import javax.swing.JFrame; 

import javax.swing.JPanel; 

 

class PolygonDrawing extends JPanel { 

    @Override 

    protected void paintComponent(Graphics g) { 

        super.paintComponent(g); 

        int[] xPoints = {20, 80, 120, 60}; 

        int[] yPoints = {40, 20, 80, 120}; 

        int nPoints = 4; 

        Polygon polygon = new Polygon(xPoints, yPoints, nPoints); 

        g.drawPolygon(polygon); 

    } 

} 

 

public class PolygonExample { 

    public static void main(String[] args) { 



        JFrame frame = new JFrame("Polygon Example"); 

        frame.setSize(200, 200); 

        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

        frame.add(new PolygonDrawing()); 

        frame.setVisible(true); 

    } 

} 

 

These examples provide a basic introduction to drawing lines, rectangles, circles, ellipses, arcs, and 

polygons using the `Graphics` class in Java. You can further customize and enhance these examples 

based on your specific requirements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Theoretical Assignments 
1. What are the key characteristics of the Java programming language discussed in Unit 1? 

2. Explain the role of the Java development kit and Java runtime environment in Java 

programming. 

3. Differentiate between Java and C++ in terms of their features and functionalities. 

4. Discuss the concept of Byte Code and its significance in the Java Virtual Machine. 

5. How does the Java language handle constants, variables, and data types? Provide 

examples. 

6. Explore the various operators and expressions in Java, highlighting their usage and 

importance. 

7. What are the control structures in Java, and how do they contribute to program flow 

control? 

8. Explain the process of defining a class and creating objects in Java, as covered in Unit II. 

9. Discuss the role of constructors in Java, emphasizing their importance in object 

initialization. 

10. What is Garbage Collection in Java, and how does it impact memory management? 

11. Compare and contrast different types of inheritance discussed in Unit III. 

12. Demonstrate the use of the super keyword to call superclass constructors, creating a 

multilevel hierarchy in Java. 

13. Explore the concept of method overriding and dynamic method dispatch in Java. 

14. How can abstract classes be used in Java, and what is the significance of the final 

keyword? 

15. Provide an overview of I/O Basics, including streams and predefined streams in Java. 

16. How is console input read and console output written in Java? 

17. Explain the concepts of one-dimensional and two-dimensional arrays in Java. 

18. Discuss the String handling mechanisms using String and StringBuffer classes. 

19. Explore the different types of packages in Java and discuss the process of defining and 

importing packages. 

20. Describe the principles of exception handling in Java, including types of exceptions, try-

catch blocks, and user-defined exceptions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Practical Assignments 
1. Java Programming (Unit II): 

   - Write a Java program to demonstrate the use of variables, constants, and different data types. 

   - Implement a Java program that uses control structures (if-else, switch) for decision-making. 

   - Develop a Java program that involves the use of loops for repetitive tasks. 

 

2. Inheritance (Unit III): 

   - Create a Java program illustrating single inheritance and multiple inheritance using classes. 

   - Implement a multilevel hierarchy in Java, showcasing the use of the super keyword. 

   - Develop a Java program that uses abstract classes for achieving abstraction and code reusability. 

 

3. Arrays and Strings (Unit IV): 

   - Write a Java program to manipulate a one-dimensional array. 

   - Implement a program that uses a two-dimensional array to store and manipulate data. 

   - Explore String handling in Java by writing a program that uses String and StringBuffer classes. 

 

4. Exception Handling (Unit VI): 

   - Develop a Java program that deliberately generates and handles exceptions using try-catch blocks. 

   - Implement a program that demonstrates the use of multiple try-catch clauses for different 

exceptions. 

   - Create a custom Java exception and use it in a program with appropriate handling. 

 

5. Multi-threaded Programming (Unit VII): 

   - Write a Java program that illustrates the creation of threads using both the Thread class and 

Runnable interface. 

   - Implement a program that demonstrates thread synchronization using methods and statements. 

   - Create a Java program showcasing inter-thread communication to synchronize the execution of 

threads. 

 

6. Applet Programming (Unit VIII): 

   - Develop a basic Java applet that draws simple shapes (lines, rectangles, circles) using the Graphics 

class. 

   - Incorporate an applet into an HTML page using the <applet> tag and run it in a web browser. 

   - Write a Java applet that responds to user events, such as mouse clicks or key presses. 

 

These programming exercises cover various concepts from Java programming, ensuring a practical 

understanding of the topics discussed in the respective units. 

 


