A,

| = |

Urrg ree Gus gateafret
ufena

JAGAT GURU NANAK DEV
PUNJAB STATE OPEN UNIVERSITY, PATIALA

(Established by Act No. 19 of 2019 of the L egidature of State of Punjab)

The Motto of the University
(SEWA)

SKILL ENHANCEMENT EMPLOYABILITY WISDOM ACCESSIBILITY

— —————

Bachelor of Computer Applications (BCA)
Course Name: Computer System Architecture

Course Code : BCA 3 03T

ADDRESS: C/28, THE LOWER MALL, PATIALA-147001
WEBSITE: www.psou.ac.in

SELF-INSTRUCTIONAL

Q‘?‘ﬂ’% JAGAT GURU NANAK DEV

- - ~PUNJAB STATE OPEN UNIVERSITY PATIALA
(Established by Act No.19 of 2019 of L egislature of the State of Punjab)

e AET Bum ERlaiEe
ufenmar

PROGRAMME COORDINATOR :

Dr. Monika Pathak

Assistant Professor, School of Sciences and Emerging Technologies
Jagat Guru Nanak Dev Punjab State Open University, Patiala

PROGRAMME CO-COORDINATOR :

Dr. Gaurav Dhiman

Assistant Professor, School of Sciences and Emerging Technologies
Jagat Guru Nanak Dev Punjab State Open University, Patiala

COURSE COORDINATOR :

Dr. Karan Sukhija

Assistant Professor, School of Sciences and Emerging Technologies
Jagat Guru Nanak Dev Punjab State Open University, Patiala

ﬁ*‘?ﬁ% JAGAT GURU NANAK DEV

-~ PUNJAB STATE OPEN UNIVERSITY PATIALA
(Established by Act No.19 of 2019 of L egidature of the State of Punjab)

i B e
ufeEmmar

PREFACE

Jagat Guru Nanak Dev Punjab State Open University, Patiala was established in
Decembas 2019 by Act 19 of the Legislature of State of Punjab. It is the first and only Open
Universit of the State, entrusted with the responsibility of making higher education accessible
to all especially to those sections of society who do not have the means, time or opportunity
to pursue regular education.

In keeping with the nature of an Open University, this University provides a flexible
education system to suit every need. The time given to complete a programme is double the
duration of a regular mode programme. Well-designed study material has been prepared in
consultation with expertsin their respective fields.

The University offers programmes which have been designed to provide relevant,
skill-based and employability-enhancing education. The study material provided in this
booklet is self instructional, with self-assessment exercises, and recommendations for further

readings. The syllabus has been divided in sections, and provided as units for simplification.

The Learner Support Centres/Study Centres are located in the Government and
Government aided colleges of Punjab, to enable students to make use of reading facilities,
and for curriculum-based counselling and practicals. We, at the University, welcome you to

be apart of thisinstitution of knowledge.

Prof. G. S. Batra,
Dean Academic Affairs

BCA-3-03T: Computer System Architecture
Total Marks: 100
External Marks: 70
Internal Marks: 30
Credits: 4
Pass Per centage: 35%

INSTRUCTIONS FOR THE PAPER SETTER/EXAMINER

1
2.

4,

5.

The syllabus prescribed should be strictly adhered to.

The question paper will consist of three sections: A, B, and C. Sections A and B will
have four questions from the respective sections of the syllabus and will carry 10
marks each. The candidates will attempt two questions from each section.

Section C will have fifteen short answer questions covering the entire syllabus. Each
question will carry 3 marks. Candidates will attempt any ten questions from this
section.

The examiner shall give aclear instruction to the candidates to attempt questions only
at one place and only once. Second or subsequent attempts, unless the earlier ones
have been crossed out, shall not be eval uated.

The duration of each paper will be three hours.

INSTRUCTIONS FOR THE CANDIDATES

Candidates are required to attempt any two questions each from the sections A and B of the
guestion paper and any ten short g questions from Section C. They have to attempt questions
only at one place and only once. Second or subsequent attempts, unless the earlier ones have
been crossed out, shall not be evaluated.

Course: Computer System Architecture

Course Code; BCA-3-03T

Course Outcomes (COs)

After the completion of this course, the students will be able to:

CO1 | Explain the organization of basic computer , its design and the design of control unit.

CO2 | Demonstrate the working of central processing unit and RISC and CISC
Architecture.

CO3 | Describe the operations and language of the register transfer, micro operations and
input- output organization.

CO4 | Understand the organization of memory and memory management hardware.

CO5 | Elaborate advanced concepts of computer architecture, Paralel Processing, inter

processor communication and synchronization.

Section A

Unit |: Basics of Data Representation- Number System, Conversions of Number Systems,
I’s and 2’s Complements, fixed and floating point representation, character representation,
addition, subtraction, magnitude comparison.

Unit I1: Introduction to Boolean algebra - Logic gates, Boolean algebra, K-Maps, Sum of
Products, Product of Sums.
Unit 11l: Combinational circuits and Sequential Circuits: decoders, multiplexors,
Encoders, DE-multiplexers Half Adders, Full Adders, Flip Flops, registers, counters and
memory units.
Unit IV: Basic Computer Organization and Design- Computer Architecture, Structure,
Computer registers, Common Bus Systems, Arithmetic, Logical, Shift Micro-operations, and
Design of ALU.

Section B
Unit V: Timing and Control Unit-Instruction cycle, Memory reference instructions,
Register reference instructions, Input-output instructions, Design of Timing and Control Unit.
Unit VI: Design of Central Processing Unit: Register organization, stack organization,
Register Organization, one address instructions, two address instructions, and three address
instructions. Instruction formats, addressing modes.
Unit VII: Input-Output Organization: 1/O interfaces, Data transfer schemes. 1/0 control
mechanisms - Program controlled, Interrupt controlled and DMA controller.
Unit VIII: Memory Unit: Memory hierarchy, High-speed memories, Organization of a
Cache memory unit, Virtual memory, Memory management.

Reference Books
e Mano, Morris M., “Computer System Architecture”, 3" ed., Prentice Hall, 2007

e Hayes, J.P., “Computer Architecture and Organization”, McGraw Hill, 1998

e Hennessy, J.L., Patterson, D.A, and Goldberg, D., “Computer Architecture a
Quantitative

Approach”, Pearson Education Asia, 2005

e Leigh, W.E. and Ali, D.L., “System Architecture: software and hardware concepts”,
South Western Publishing Co., 2000

Bachelor of Computer Applications (BCA)
COMPUTER SYSTEM ARCHITECTURE

UNIT I: INTRODUCTION TO NUMBER SYSTEM

STRUCTURE

1.0 Objectives

1.1 Introduction

1.2 Types of Number System

1.3 Conversion of Number System

1.4 Representation of Signed Binary Numbers
1.4.1.Sign-magnitude
1.4.2.0ne’s Complement

1.4.3.Two’s Complement

1.5.Addition and Subtraction using 1’s complement
1.5.1.Subtraction using 1’s complement
1.5.2.Binary Addition using 2’s Complement
1.5.3 Subtraction using 1’s complement
1.5.4.Subtraction using 2's complement

1.6.Fixed and Floating point representation

1.7.Binary Addition and Substraction

1.8.Chracter Code Reper sention

1.9 Summary

1.10 Practice Questions

1.0 OBJECTIVES

e Understnading Number System, Conversions of Number Systems, 1’s and 2’s
Complements,

e Understnading addition, subtraction and magnitude comparison.
1.1 INTRODUCTION

In Digital System, the number system is used to represent in information in number system has
different base value and the index vaue. In which, the most common of them are the decimal
number system,binary number system,,octal number system and hexadecimal number system. In
these number systems, the base or radix of the number depends on the total number of the digital
used in number system.Suppose, if the in number system is binary that there are only two
numbers 0 and 1.The number O represent the lower state of the value or 1 represent the highest
value. The digital value in the number system can be calculated by using digit value,index value,
and finally through the base value.

1.2 Types of Number System
In the digital computer system, there are four types of number systems used for representing
information.
1. Binary Number System
2.Decimal Number System
3.0ctal Number System
4. Hexadecima Number System

Binary
Number
System

Hexadecim Decimal
al Number Number
System System

Octal
Number
System

Diagram of Number System

1. Binary Number System:Generdly,a binary number system is used to represent the basic
structure of digital computer. It contains only two digits, either 0 or 1. In digital electronics O
means off and 1 means on value or we can say 0 is the absence of eectronic pulse and 1 means
presence of electronic pulse. Each digit is known as single value of bit.the base value of binary

number system s 2.

Basic Characteristics of Binary numbers:
1.1t contain only two values, either O or 1.
2.1t isaso known as base 2 number system.

3. The position of adigit represents the O power of the base(2). Example: 2°

2.Decimal Number System:In digital electronics, decima number system contains O to 9 digits
and its base value is 10. In which 0 is the minimum value of the digit, and 9 is to represent the
maximum value.

3.0ctal Number System:In digital system,octal number system uses the digital value from (O
to 7). In which 0 is the minimum value and 7 is the maximum value. There are only eight bit
valueis possible. It contain only three bits to represent the octal number system.

Basic Characteristics of octal number system:

1. Octal number system carries the value from 0 to 7.
2. The base value of octal number systemiis 8.
3. The position of adigit represents the O power of the base(8). Example: 8°

Number Octal Number
000
001
010
011
100
101
110
111

N[OOI WN RO

4.Hexadecimal Number System:It is the last way to represent the number in the digital number
system called hexadecima number system.It contain the value from 0 to 15 and the base address
of the value is 16 means it identifies 16 symbols(0 to 9 and A to F), where A is represent 10
value and B is 11 and so on. There are only 4 bits are required to represent hexadecimal number
system.

Basic Characteristics of hexadecimal number system:
1.1t has to repersent ten digitsfrom 0 to 9 and 6 lettersfrom A to F.
2. In hexadecimal letters from A to F defines numbers from 10 to 15.

3.In hexadecimal number, the position of a digit represents the O power of the base(16).

Binary Number Hexadecimal
Number
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

Table of Hexadecima Code

4

1.3 CONVERSION OF NUMBER SYSTEM
In Digital Electronics,various types of number systems such as binary,digital,octal, and
hexadecimal and the number system can be converted from one number system to another

number system like

1. Binary to other Number Systems.

2. Decima to other Number Systems.

3. Octal to other Number Systems.

4. Hexadecima to other Number Systems.

—_

Binary to
other Number
System

1

@ Binary to Decimal

I Decimal to
other Number
System

—

@ Decimal to Binary

Number Base Conversion

Octal to
other Number
System

k)

@ Octal to Binary

F

Hexadeximal
to other
Number System

%

® Hexadecimal

to Binary

@ Hexadecimal
to Decimal

@ Hexadecimal
to Octal

®Octal to Decimal

®(ctal to
Hexa-decimal

® Decimal to Octal

® Decimal to
Hexadecimal

@ Binary to Octal

® Binary to
Hexadecimal

1.3.1 Binary to Other Number System:In digital computer system,there are three possible
conversion through binary number system and these are given below:

a.Binary to Decima Number System

b.Binary to Octal Number System

c.Binary to Hexadecimal Number System

a.Binary to Decimal Number System: It is very simple process of conversion.The process
starts from multiplying the bits of binary number system with its corresponding positiona
weights after that,add all those products.

Example: (10110.001),

We multiplied each bit of (10110.001), with its respective positional weight, and last we add the
products of all the bits with its weight.

(10110.001),=(1x2%)+(0x2%)+(1x2?)+(1x2Y) +(0x2°)+(0x2 1) +(0x 22 +(1x27)
(10110.001),=(1x16)+(0x8)+(1x4)+(1x2)+(0x1)+ (0x12)+(0x L4)+H(1x1/8)

(10110.001),=16+0+4+2+0+0+0+0.125
(10110.001),=(22.125)10Answer .

b.Binary to Octal Number System:The base value of octal number system is 8.In a binary
number system, the group of three bits is equal to one octal digit. In digital computer system,
there are three steps to convert a binary number system into octal number system and these steps
are given below:

1.In first step, make a group of three bits on both the sides.If there will be one or two bits left to
make a group then add required number of bits.

2.1n the second step, write the octal digits corresponding to each group.

Example: (111110101011.0011),
1. Firstly, we make group of three bits on both sides of the binary point.
111 110 101 011001 1

On theright side of the binary point, the last group has only one bit. To make it a complete group
of three bits, we added two zeros on the extreme side.

111 110 101 011.001 100
2. Then, we wrote the octal digits, which correspond to each group.
(111110101011.0011),=(7653.14)sAnswer .

c. Binary to Hexadecimal Number System:The base value of hexadecima number system is
16. In digital system, the group of four bitsis equal to one hexadecimal number system. In digital
computer system, there are two steps to convert a binary number system into hexadecimal
number system and these steps are given below:

1.In the first step, make a group of four bits on both the sides.If there will be any number of bits
are | eft then add required number of bits.

2.1n the second step, write the octal digits corresponding to each group.
Example: (10110101011.0011),

1. Firstly, we make pairs of four bits on both sides of the binary point.

6

111 1010 1011.0011

On the left side of the binary point, the first group has three bits. To make it a complete group of
four bits, add one zero on the extreme side.

0111 1010 1011.0011
2. Then, we write the hexadecimal digits, which correspond to each group.
(011110101011.0011),=(7AB.3)16Answer .

1.3.2. Decimal to Other Number System

In digital computer system,there are three possible conversion through decima number system
and these are given below:

a. Decimal to Binary Number System

b.Decimal to Octal Number System

c.Decimal to Hexadecimal Number System

a.Decimal to Binary Number System:In digital computer system,the decimal number can be be
represented in interger or floating point integer. When the decimal number is floating point
integer, then it will be converted in both part(integer value and fractional value).

In digital system, there are the two basic ways to represent decima number into a similar
number of any base.

1.In the first step, division operation is used.
2.1n another step,multiplication method isused .
1.Using Division method :In this method ,decimal number is repeatedly divided by 2 until we
get the remainder to be 0..After that the result can be calculated from bottom to top.The first
remainder is known as L SB(Least Significant Bit) and the last remainder is known as M SB(Most
Significant Bit).
Example: 262
Solution: Stepsto solve

1. Divide the Given number by 2

2. For the next iteration , get the quotient value.

3. Get the remainder which is used to determine the binary number

7

4. Repest the steps until the iteration gets a 0 as quotient.

262
131
65
32
16

[#s]

Y

o]

S oS S R S S
(== == R == D = I = N S e =)

=

b.Using Multiplication Method: In this method,decimal fraction can be converted into binary by
repition value by 2 ,until we get the fraction production is O0.After that the result can be
calculated from top to bottom.

b.Decimal to Octal Number System:This method is similar to decimal to binary conversion.In

which,the base value or radix value is 8. Therefore, the value is divided by 8,when we want to
convert integer value to octal number system or we want use multiplication method to convert
fractional decimal to octal.

Example:

(425)10 = (?)8

Solution:
(425)16=0s
81425
8(53 |11
8/6 |51
0 |61

~(425)16=(651)sAnswer .

c. Decimal to Hexadecimal Number System:In this method ,the conversion of decimal to hexa
is similar to decimal to bimary and decimal to octal number system. In which, the base value is
16,therefore, the division method is similar to integer value and multiplication by 16 for fraction

8

value.
Example:

(1423)10=(_2_)16

Solution:
(1423) 1o=Q 16

16| 1423
16|88 |F 1
6|5 |8 1

0o |51

~(1423)10=(58F)16Answer .

1.3.3 Octal to Other Number System
In digital computer system,there are three possible conversion through Octal number system and
these are given below:

a. Octal to Decimal Number System

b.Octal to Binary Number System

c¢.Octal to Hexadecimal Number System

a.Octal to Decimal conversion:Octa Number is similar to binary to decimal conversion,just
change the weights assigned to each octal number.

Example: 1265 to decimal.
Octal Number-->12 6
Weights-—> (1x8?) + (2x8") + (6 x 8°)

(82 =64), (8" = 8) and (8° =1), this gives amultiplier value for each column.
Multiply the digit in each column by the column multiplier value for that column to give:
1x64=64 2x8=16 6X1=6

Then simply add these results to give the decimal value.

64 + 16 + 6 = 8619

Therefore 1265 = 8619 Answer.

Example:

Octal Number--->7 3

5+24+448=(477)10 Answer.

Example:(0.24)s
Octal Number---> .24
Weights----> 8

5
gt g8°
L 5+8%5
L 3*8'=24
 7%8°=448
8—2
(2r8h)=2*1/8=1/4 (4*8)2=4* 1/8%=4/64=1/16

(0.24)5=(0.3125)10ANnswer.

b. Octal to Binary Number System:Octal number is one of the number systems which has
vaue of base is 8(23), that means there only 8 symbols — 0, 1, 2, 3, 4, 5, 6, and 7,therefore
eachoctal digit can represented by a 3-bit binary number.

Octal Symbol Binary equivalent
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Table of 3-bit Octal Equivalent Binary code

10

Example:(46)s=()

Octal Number------------------- >4 6
v v
3-Bit Octal Number------------ 100 110

(46)5=(100110),Answer.

Example: Octal Number------------------- -5 6 7. 1 1 6
v v v v v v
3-Bit Octal Number------------ > 101 110 111 001 001 110

(567.116)g=(101110111.001001110),Answer.

c. Octal to Hexadecimal Number System:Octal to hexadecimal is similar to hexadecimal to
octal number.But by the following rules we have to convert easily from octal to hexadecimal
conversion:

1. Firstly, we will find the binary equivalent of 3-bit number and arrange in group
combination. .

2. Next, convert binary number to its hexadecimal equivaent making 4-bit group
combination.

Example 1. (152.25)g

Step 1:

We write the three-bit binary digit for 1, 5, 2, and 5.
(152.25)5=(001101010.010101),

So, the binary number of the octal number 152.25 is (001101010.010101),
Step 2:

1. Now, we make pairs of four bits on both sides of the binary point.

0 0110 1010.0102 01

On the left side, the first pair has only one digit, and on the right side, the last pair has only two-
digit. To make them complete pairs of four bits, add zeros on extreme sides.

11

0000 0110 1010.0101 0100
2. Now, we write the hexadecimal digits, which correspond to each pair.
(0000 0110 1010.0101 0100),=(6A.54)16 Answer.

Example: (4 5 6 7 : 2 6 6)s
(100 101 110 111 010 110 110)
(4567.266)s=(100101110111.010110110)16 Answer .

1.3.3 Hexadecimal to Other Number System

In digital computer system,there are three possible conversion through Octal number system and
these are given below:

a. Hexadecimal to Decima Number System

b.Hexadecimal to Binary Number System

c. Hexadecimal to Octal Number System

a.Hexadecimal to Decimal Number System:In this method, al the conversion is similar to
binary to decimal and octal to decimal. Before conversion we have to know about the equvilant
of hexadecimal into decimal conversion and hexadecimal into binary conversion.

Example: (A10)16 = ()10

Solution:

(A10)16=()10

A10

=Ax162+1x161+0%x160

=10x256+1x16+0x1

=2576

~(A10)16=(2576)10

b. Hexadecimal to Binary Number System:In this method,the base value is 16,therefore each

hexadecimal value can be converted into binary equivalent just replacing each hexadecimal digit
with 4-bit binary equivalent.

12

Example:
1.(283)16 = ()2

Solution:
(283)16=()2

2 8 3
0010 1000 0011

~(283)16=(101000001 1),

c.Hexadecimal to Octal Number System:In this method,when converting from hexadecimal to
octal,it is often easier to first convert the hexadecimal into binary and then from binary to octal
number system.

Example: 1. (951)16 = ()8

Solution:
(951)16=()8

First convert hexadecimal to binary
(951)16=()2

S S it
1001 0101 0001

~(951)16=(100101010001)2

Now convert binary to octal
(100101010001)16=()8

100 101 010 001
4 5 2 1

~(100101010001),=(4521)g

~(951)16=(452)sAnswer.

13

1.4 Representation of Signed Binary Numbers:
It can be represented by following three forms:
1.Sign-magnitude 2.0ne’s Complement 3.Two’s Complement

1.4.1 Sign-magnitude: In number representation technique sign-magnitude is represented by one
signbit(0 or 1) and magnitude bits.In which ‘0’ means positive(+ve) value and ‘1’ means
negative number(-ve) value.Addtionally, magnitude bits gives the value of signed number.

Example: 110110 repersents (-22)1o

In above example,-ve value represent the 1 value and other 5 values represent the magnitude.

1 1 0 1 1 0

Yot -v@BIT Magnitudebits >

Example: (+22)=(10110)

0 0 0 1 0 1 1 0

v

Ggt+veBsit Magnitude bits

1's compliment and 2's compliment:In digital computer system one compliment and two
compliment are two important concepts.These two concepts lies under signed binary number.

1.4.2 One's Compliment

One's Compliment of any binary number can be obtained by inverting all the 1's by O's and all
theO'shby 1's.

Example:

Binary Number One’s Complement
101101 --------------- > 010010
10011001------------- > 01100110

0/0 0o S— > 11101010

One;s complememt form is also used for representing singed number.

14

Example: (0011),=(-3)10
Covert into One’s Complement
(1100)2:(-3)10

After convert one complement, the negative value(-) is converted into (+) value and we get
signed number of one’s complement.

Example: (0000),=(+0)10
Covert into One’s complement
(11111)2:(-0)10

After convert one complement, the negative value(-) is converted into (+) value and we get
signed number of one’s complement.

1.4.3.Two's Complement

Two compliment is obtained by adding 1 to the 1's compliment of the binary number.The best
part of the two's compliment is that it includes signed bit automatically.

Example:
101101 Binary Number
010010 One’s Complememt

+1

010011 Two’s Complement
Signed number are calculated similar to 1’s Complement to 2’s Complement.

Example: Let we are using 5 bits register. The representation of -5 and +5 will be as follows:

@
@
)
(5o}

MSB LSB

-
L)
-
o

h

]0\0]1 0|1]| +5

| | | |

1 h|
Sign bit Magnitude Sign bt Magnitude

1
‘|

In above example,+5 is represented as it is represented in positive sign magnitude method. -5 is
represented in negative sign magnitude.

15

Steps for represented -5 using the following steps:
(i) +5=00101

(ii) Take 1’s complement of 0 0101 and that is 1 1010. MSB is 1 which indicates that number is
negative.

MSB isaways 1 in case of negative numbers.

1.5. Addition and Subtraction using one’s complement

In binary representation ,we have to discuss the arithemetic operations on one’s complement and
two’s complement .

1.5.1. Addition using 1’s complement
There are three different cases possible when we add two binary numbers which are as follows:

Case |: When addition of the positive number with a negative number when the positive value
has greater magnitude.

In this case firstly we calculate the 1’s complement of the given negative value and sum up with
the given positive number.If we get the end-around carry 1, then it will added to the LSB.

Example:+ 1110 and - 1101

Solution:
+ 1 1 1 0 => 01 1 1 0
-1 1 0 1 = 10 0 1 O (taking 1’s complement)
00 0 0 0
1 carry
00 0 0 1
Answer. + 0001.

Example:+ 1101 and - 1011
(Assume that the representation isin asigned 5-bit register).

Solution:

16

+1101 = 01101
-1011 = 10100 (taking 1’s complement)
00001
1 cary

00010
Answer. + 0010.

Case 2: When addition of the positive number with a negative number in this case the negative
number has a higher magnitude.

In this case, firstly calculate the 1°s complement of the negative value and sum up with positive
number but there will be non end-carry.After that,the sum is obtained by taking 1’s complement
of the magnitude bits of the result to get the final result.

Example: + 1010 and - 1100
Solution:

+1010 = 01010
-1100 = 10011 (1’scomplement)

11101
Answer. — 0010.

Example:+ 0011 and - 1101.
Solution:

+0011 = 00011
-1101 = 10010 (I’scomplement)

10101
Answer. — 1010.

17

Case 3: When addition of two negative numbers.

When the addition of two negative numbers 1’s complement.In which, end-around carry will
always considered.After that, which get added to the LSB, and for getting the final result, we
take the 1's complement of the result.

Example: -1010 and -0101
Solution:
-1010 = 10101 (I’scomplement)
-0101 = 11010 (I’scomplement)
01111

1 cary

10000
I’s complement of the magnitude bits of sum is 1111 and the sign bit is 1.

Answer. -1111.
Example:-0110 and -0111.
Solution:
-0110 = 11001 (1’scomplement)
-0111 = 11000 (I’scomplement)
10001

1 cary

10010
I’s complement of 0010 is 1101 and the sign bit is 1.

Answer .- 1101.

18

1.5.2 Subtraction using 1’s complement

There are some steps to subtract two binary numbers using I’s complement.
1.Firstly, find the 1's complement of the subtrahend.

2.After that, add the complement number with the minuend.

3.If got a carry, add the carry to its LSB, otherwise it take 1's complement of the result which
will be negative.

Example 1: 10101 - 00111

We take 1's complement of subtrahend 00111, which comes out 11000. Now, sum them. So,
10101+11000 =1 01101.

In the above result, we get the carry bit 1, so add thisto the LSB of a given result,

i.e, 01101+1=01110

Example 2: 10101 - 10111

We take 1's complement of subtrahend 10111, which comes out 01000. Now, add both of the
numbers. So,

10101+01000 =11101.

In the above result, we didn't get the carry bit. So calculate the 1's complement of the result, i.e.,
00010, which is the negative number.

1.5.3.Binary Addition using 2°s Complement

Binary addition becomes easier when negative numbers are expressed using 2’s complement.

Case |: When the positive number has a greater magnitude while addition of the positive number
with a negative number.

In the above case,find the 2’s complement of the given negative number and sum up with given
positive number.If the carry value will be 1 then a positive number and carry vaue will be
discared and left bits are the final result.

19

Example:(i) -1011 and -0101

Solution:
+1011 =
-0101 =
(Carry 1 discarded)
Answer. + 0110.

(if) + 0111 and — 0011.

Solution:
+0111 =
-0011 =
(Carry 1 discarded)
Answer .+ 0100.

01011
11011 (2’s complement)

00110

00111
11101

00100

Casell: When negative number has a higher magnitude.

Firstly, add a positive value with the 2’s complement value of the negative number.If there is no
carry value is found than take the 2’s complement ang get the final result.

Example:(i) +0011and-0101

Solution:

+0011 =

-0101 =

00011
11011 (2’s complement)

11110

20

2’s complement of 1110 is (0001 + 0001) or 0010.
Answer . - 0010.

(i)+0100and-0111

Solution:

+0100 = 00100
-0111 = 11001 (2’s complement)
11101

2’s complement of 1101 is 0011.
Answer. — 0011.
Caselll: When both the numbers are negative.

When two negative numbers are added a carry will be generated from the sign bit which will be
discarded. 2’s complement of the magnitude bits of the operation will be the final sum.

(i) — 0011 and - 0101
Solution:

-0011 = 11101 (2’s complement)
-0101 = 11011 (2’s complement)

(Carry 1 discarded) 11000

2’s complement of 1000 is (0111 + 0001) or 1000.

Answer. — 1000.

21

(ii) -0111 and — 0010.

Solution:
-0111 = 11001 (2’s complement)
-0010 = 11110 (2’s complement)
(Carry 1 discarded) 10111

2’s complement of 0111 is 1001.
Answer. — 1001.

1.5.4. Subtraction using 2's complement:

There are some steps to subtract two binary numbers using I’s complement.
1.Firstly, find the 2's complement of the subtrahend.

2.After that,add the complement number with the minuend.

3.If we get the carry by adding both the numbers, then we discard this carry and the result is
positive else take 2's complement of the result which will be negative.

Example 1: 10101 - 00111
2's complement of subtrahend 00111, which is 11001. Now, sum them. So,
10101+11001 =1 01110.

After solve it, the carry bit 1. So we discard this carry bit and get the final result and a positive
number.

Example 2: 10101 - 10111

2's complement of subtrahend 10111, which comes out 01001. Now, additionof both of the
numbers. So,

10101+01001 =11110.

After solve it, we didn't get the carry bit. So calculate the 2's complement of the result, i.e.,
00010. It isthe negative number and the final answer.

22

1.6.FIXED AND FLOATING POINT REPERSENTATION

In computer system,data is represented by binary bits 0’s and 1’s because computer understand
only machine language either 0’s and 1’s.In Computer system bits stored in memory registers so,
scientists have designed a real number representation method in 8-bit,16-bit and 32-bits
combinations.There are two approaches that are developed to stored real numbers and these
methods are:

1.Fixed point number 2.Floating point number
1.Fixed Point Number:

In computing, fixed-point number representation is a real data type for a number. By the use of
fixed number representation, data is converted into binary form, and then data is processed,
stored and used by the system.

Fixed point representation of data

SIGN BIT INTEGRAL PART FRACTIONAL PART

0 or 1 bit 4 bits 1 hits
Sign bit -The fixed-point numbers in binary uses a sign bit. A positive number has a sign bit
0,while a negative number has asign bit 1.
Integral Part — The integral part is of different lengths at different places. It depends on the
register’s size, like in an 8-bit register, integra part is4 bits.
Fractional part —Fractional part is similar to integral part.It takes different lengths at different
places
8 bits= 1Sign bit + 4 bits(integral) + 3bits (fractional part)
16 bits= 1Sign bit + 9 bits(integral) +6 bits (fractional part)
32 bits= 1Sign bit + 15 bits(integral) + 9 bits (fractional part)

Example:Number is4.5
Step 1:- Convert the number into binary form.

45=100.1
Step 2:- Represent binary number in Fixed point notation
0 0 | 1 0 0 1 | 0 0
< ——» =X - > - >
SIGN BIT INTEGRAL PART FRACTIONAL PART

The smallest negative number in fixed-point representation.

23

1 1 1 1 1 1 1 1

Smallest negative number = -15.875
Thelargest number in fixed-point representation.

0 1 1 1 1 1 1 1

Larger number = +15.875

2.Floating-point Representation
Computer system uses floating-point numbers representation to convert input data into binary
form. The binary form number is converted into ‘scientific notation,” and then this scientific
notation is converted into floating-point representation.
The floating-point notation has two types of notation
1. Scientific notation
2. Normalized notation
Scientific notation — Method of representing binary numbersinto a x b® form. Scientific notation
is further converted into floating-point notation because floating-point notation only accepts
scientific notation.
For example:
Number = 376.423 (its not scientific notation)
Number in scientific = 36.4423 x 10" or 3.64423 x 10

c N
axb®
a= any real number
b = base
e = exponent integer

For example: 32.625 x 10°
1101.101 * 2'*
where 1101.101 is the mantissa part.
It is the base part where we need not explicitly represent radix or base because the binary
base is dways 2.

2101 —

1.7.BINARY ADDITION AND SUBSTRACTION
Binary Addition:In Number System, the binary addition and substation is similar to the decimal
number system. When we may add two numbers suppose 12 and 10, the result is 22.

The rulesfor binary addition are:

0 + 0 = 0 Sum of 0 with Carry of O

24

0 + 1 = 1 Sum of 1 with Carry of O
1 + 0 = 1 Sum of 1 with Carry of O
1 + 1 = 10 Sum of 0 with Carry of 1
1 + 1 + 1 = 11 Sum of 1 with Carry of 1
Example:
10+10=100
caryl 1 O
+ 1 0
1 0 O
Example:
0011010 + 001100 =00100110 171 carry

0011010 =261
+0001100 =12

0100110 =38w

Binary Subtraction:In Binary Subtraction, thisis primary technique. In this method, ensure
that the subtracting value is larger to smaller otherwise this method won’t work properly. If
minuend is smaller than the subtrahend than subtraction is possible.

Therulesfor binary addition are:

0 - 0 = 0 Subtract O with Borrow O

0 - 1 1 Subtract O with Borrow 1

1 - 0 = 1 Subtract 1 with Borrow O

1 - 1 = 10 Subtract O with Borrow O

Case Al=uiB Subtract |Borrow

1 0 - 0 0 0
2 ¥ = 0 1 0
3 1 - 1 0 0
4 3 TG 0 1

Table of Binary Subtraction

25

Example: 1 1 0 1Minuend

- 0 1 O 1Subtrahend

1 0 0O

Borrow

|_+

Exampleel 0 101

-01 10

00 11

1.8.CHRACTER CODE REPERSENTION

We know that digital circuits and computer system understand binary numbersi.e 0 and 1 but in
real environment we aso practice on character codes such as Alphanumeric codes or ASCII
codes.Latest computer system are used for transferring the data in form of names,letters and
other symbols.So, it has deal with the letters and symbols for conveying intelligently
information with the use of "Alpha-Numeric Codes".

ASCII Code:

ASCII codes are represented as American Standard Code for Information Interchange and is
pronounced as ‘ask-ee’.It is a seven bit code based on the English alphabets and these codes are
introduced in 1967.Since, then ASCII codes are being modified and updated.It contains 128
characters because ASCII code is 7 bit code and it represent 2'=128.In digital format,a total
number of 95 printable characters.In which, 26 upper case letters(A-Z),26 lower case letters(a-
z),10 numeras(0-9), and 33 specia characters which contains mathematical
symbols,punnchuation marks and some space characters.So, in latest systems ASCII code is
development of 8bit code and it can be represent as 2°=256 characters.

DEC | OCT | HEX BIN Symbol Description

26

0 0 0 0 NUL Null char

1 1 1 1 SOH Start of Heading

2 2 2 10 STX Start of Text

3 3 3 11 ETX End of Text

4 4 4 100 EOT End of Transmission

5 5 5 101 ENQ Enquiry

6 6 6 110 ACK Acknowledgment

7 7 7 111 BEL Bell

8 10 8 1000 BS Back Space

9 11 9 1001 HT Horizontal Tab

10 12 OA 1010 LF Line Feed

11 13 0B 1011 VT Vertical Tab

12 14 0oC 1100 FF Form Feed

13 15 oD 1101 CR Carriage Return

14 16 OE 1110 SO Shift Out / X-On

15 17 OF 1111 Sl Shift In/ X-Off

16 20 10 10000 DLE Data Line Escape

17 |22 |11 | 10001 DC1)EZ g’l'\;e Control 1 (oft.
18 22 12 10010 DC2 Device Control 2

19 |23 |13 10011 DC3)EZ g’;‘s Control 3 (oft.

27

20 24 14 10100 DC4 Device Control 4

21 |25 |15 | 10001 NAK Esgf(')yvel dgement

22 26 16 10110 SYN Synchronous Idle

23 27 17 10111 ETB End of Transmit Block
24 30 18 11000 CAN Cancel

25 31 19 11001 EM End of Medium

26 32 1A 11010 SUB Substitute

27 33 1B 11011 ESC Escape

28 34 1C 11100 FS File Separator

29 35 1D 11101 GS Group Separator

30 36 1E 11110 RS Record Separator

31 37 1F 11111 us Unit Separator

32 40 20 100000 Space

33 41 21 100001 ! Exclamation mark

M |4 |2 100010 | * zg;‘g)e quotes (or speech
35 43 23 100011 # Number

36 44 24 100100 $ Dollar

37 45 25 100101 % Procenttecken

38 46 26 100110 & Ampersand

39 47 27 100111 ‘ Single quote

28

Open parenthesis (or open

40 50 28 101000 (bracket)

41 |51 |29 101001 |) g;csfe%aremhas (or close
42 52 2A 101010 * Asterisk

43 53 2B 101011 + Plus

44 54 2C 101100 , Comma

45 55 2D 101101 — Hyphen

46 56 2E 101110 Period, dot or full stop
47 57 2F 101111 / Slash or divide

48 60 30 110000 0 Zero

49 61 31 110001 1 One

50 62 32 110010 2 Two

51 63 33 110011 3 Three

52 64 34 110100 4 Four

53 65 35 110101 5 Five

54 66 36 110110 6 Six

55 67 37 110111 7 Seven

56 70 38 111000 8 Eight

57 71 39 111001 9 Nine

58 72 3A 111010 Colon

59 73 3B 111011 ; Semicolon

29

60 |74 |3c |111100 |< t:kgt‘;‘” (or open angled
61 75 3D 111101 = Equals

62 |76 |3 |111110 |> Snrg;agbrisgt | (or
63 77 3F 111111 ? Question mark

64 100 40 1000000 @ At symbol

65 101 41 1000001 A Uppercase A

66 102 42 1000010 B Uppercase B

67 103 43 1000011 C Uppercase C

68 104 44 1000100 D Uppercase D

69 105 45 1000101 E Uppercase E

70 106 46 1000110 F Uppercase F

71 107 47 1000111 G Uppercase G

72 110 48 1001000 H Uppercase H

73 111 49 1001001 I Uppercase |

74 112 4A 1001010 J Uppercase J

75 113 | 4B 1001011 | K Uppercase K

76 114 4C 1001100 L Uppercase L

77 115 | 4D 1001101 | M Uppercase M

78 116 | 4E 1001110 | N Uppercase N

79 117 4F 1001111 @) Uppercase O

30

80 120 50 1010000 P Uppercase P

81 121 51 1010001 Q Uppercase Q
82 122 52 1010010 R Uppercase R
83 123 53 1010011 S Uppercase S
84 124 54 1010100 T Uppercase T
85 125 55 1010101 U Uppercase U

86 126 56 1010110 Vv Uppercase V
87 127 57 1010111 W Uppercase W
88 130 58 1011000 X Uppercase X
89 131 59 1011001 Y Uppercase Y

90 132 5A 1011010 Z Uppercase Z
91 133 5B 1011011 [Opening bracket
92 134 5C 1011100 |\ Backslash

93 135 | 5D 1011101 |] Closing bracket
94 136 5E 1011110 | ~ Caret — circumflex
95 137 5F 1011111 _ Underscore

96 140 60 1100000 X Grave accent
97 141 61 1100001 a Lowercase a
98 142 62 1100010 b Lowercase b

99 143 63 1100011 c Lowercase c
100 144 64 1100100 | d Lowercase d

31

101 145 65 1100101 e Lowercase e
102 146 66 1100110 f Lowercase f
103 | 147 | 67 1100111 | g Lowercase g
104 150 68 1101000 h Lowercase h
105 151 69 1101001 [Lowercasei
106 152 6A 1101010] Lowercase |
107 153 6B 1101011 Kk Lowercase k
108 154 6C 1101100 I Lowercasel
109 155 6D 1101101 m Lowercase m
110 156 6E 1101110 n Lowercase n
111 157 6F 1101111 0] Lowercase 0
112 160 70 1110000 p Lowercase p
113 | 161 | 71 1110001 | q Lowercase
114 162 72 1110010 r Lowercaser
115 163 73 1110011 S Lowercase s
116 164 74 1110100 |t Lowercase t
117 165 75 1110101 u Lowercase u
118 166 76 1110110 % Lowercase v
119 167 77 1110111 w Lowercase w
120 170 78 1111000 X Lowercase x
121 | 171 | 79 1111001 |y Lowercase y

32

122 172 TA 1111010 z Lowercase z

123 173 7B 1111011 { Opening brace

124 174 7C 1111100 | Vertica bar

125 175 7D 1111101 } Closing brace

126 176 7E 1111110 ~ Equivalency sign —tilde
127 177 TF 1111111 Delete

According to table, we can see that 0-9 numbers represents binary numbers with 0011 prefix
value. In the same way,upper case represents 0101 0000 to 0101 1010 and lower case represents

by 0111 0000 to 0111 1010.

1.9.SUMMARY

1.https://www.javatpoint.com

2.http://gpmeham.edu.in

3.https://www.math-only-math.com

4.https://atozmath.com

5.Morris Mano of Computer System Architechture.
6.Aharon Y adin of Computer System Architechture.
7.Sajjan Singh and Gurpreet Sandhu of Computer System Architechture.

1.10.PRACTICE QUESTIONS

Key Exercise of Number System

Solve Decimal to Binary
1.Convert (27)10 to ()2
2.Convert (39)10to ()2
3.Convert (0.625)10 to ()2
4.Convert (25.15625)1 to ()2
5.Convert (423.625)10 to (),

Solve Decimal to Octal
1.Convert(127)10 to()s
2.Convert(89.1625) 14 to ()s
3.Convert(0.5625)19 to ()s
4.Convert(469)10 to ()s
5.Convert(287.684) 10 to ()s

Solve Decimal to Hexadecimal
1.Convert(829)10 to()16
2.Convert(778.7625)1 to ()16
3.Convert(1268)1 to ()16
4.Convert(46)10to ()1s
5.Convert(231.89)10 to ()16

Solve Binary to Decimal
1.Convert (11011), to ()10
2.Convert (10101.1101),to ()10
3.Convert (101101), to ()10
4.Convert (1001.0101), to ()10
5.Convert (0000.1111), to ()10

33

Solve Binary to Octal

1.Convert (101111), to ()s

2.Convert (11010111),to ()s

3.Convert (1000100.100110011), to ()s
4.Convert (1010101101.1110111), to ()s
5.Convert (0.001110)2 to ()s

Solve Binary to Hexadecimal

1.Convert (101111), to ()1s

2.Convert (11010111),to ()16

3.Convert (1000100.100110011), to ()16
4.Convert (1010101101.1110111), to ()16
5.Convert (0.001110)2 to ()16

Solve Octal to Decimal
1.Convert (735)s to ()10
2.Convert (0.24)sto ()10
3.Convert (146.51)s to ()10
4.Convert (265.78)s to ()10
5.Convert (987)s to ()10

Solve Octal to Binary
1.Convert (46)s to ()2
2.Convert (407)gto ()2
3.Convert (1256)s to ()
4.Convert (567.116)g to ()2
5.Convert (700.0356)g to ()2

Solve Octal to Hexadecimal
1.Convert (3562)s to ()16
2.Convert (4567.266)sto ()16
3.Convert (1256)s to ()16
4.Convert (567.116)g to ()16
5.Convert (750.0456)s to ()16

Solve Hexadecimal to Decimal
1.Convert (2A5B)16 t0 ()10
2.Convert (0.F1C)1st0 ()10
3.Convert (2D.2D)1s to ()10
4.Convert (EEB)16 10 ()10
5.Convert (A72.BF8)16 t0 ()10

Solve Hexadecimal to Binary
1.Convert (A6C)16 to ()2
2.Convert (9A.1A)56t0 ()2
3.Convert (F26.1BO)1s to ()2
4.Convert (29A6)16 to ()2
5.Convert (DC5A.3E4) 16 to ()2

Solve Hexadecimal to Octal
1.Convert (27A9)16 to ()s
2.Convert (85C.BD3)1st0 ()s
3.Convert (F26.1B)5 10 ()
4.Convert (29A6)16 to (g
5.Convert (DC5A.3E4) 15 to ()s

Key Exercise of Binary Addition and Subtraction and 1’s and 2’s Complement

Solve 1’s Complement
1.00110101
2.11011001
3.111101010
4.11101000
5.110001000

Solve 2’s Complement
1.10101110
2.01101000
3.11011001
4.11101000
5.110001111

Key Exercise of Sign-Magnitude

Solve decimal equivalent of following Sign-
Magnitude
1.001011

Solve decimal equivalent of following Sign-
Magnitude
1.00010111

34

2.00001111 2.1010101

REFRENCES

https.//www.javatpoint.com/conversion-of -number-system-in-digital -el ectronics
http://gpmeham.edu.in/wp-content/upl 0oads/2019/04/El ectrical -Engg-Digital -El ectroni cs-4th-
sem. pdf

https.//www.math-only-math.com/bi nary-additi on-using-1s-compl ement.html
https.//atozmath.com/example/NumToBaseConv.aspx ?he=e& b1=2& b2=16

35

https://www.javatpoint.com/conversion-of-number-system-in-digital-electronics
http://gpmeham.edu.in/wp-content/uploads/2019/04/Electrical-Engg-Digital-Electronics-4th-sem.pdf
http://gpmeham.edu.in/wp-content/uploads/2019/04/Electrical-Engg-Digital-Electronics-4th-sem.pdf
https://www.math-only-math.com/binary-addition-using-1s-complement.html

Bachelor of Computer Applications (BCA)
COMPUTER SYSTEM ARCHITECTURE

UNIT I1: INTRODUCTION TO BOOLEAN ALGEBRA

STRUCTURE

2.0 Objective
2.1 Introduction
2.2 Boolean Algebra
2.2.1. Laws of Boolean Algebra
2.2.2. De Morgan’s Theorems
2.3 Logic gates
2.4 Sum of Product and Product of Sums Forms
2.5K maps
2.6 Summary
2.7. Practice Questions

36

2.0 OBJECTIVE
Understanding Logic gates, Boolean algebra, K-Maps, Sum of Products, Product of Sums.

2.1 INTRODUCTION

In this unit Boolean algebra, rules of Boolean algebra, Logic gates , SOP and POS forms Of
Boolean expression are discussed. This unit also discuss the Simplification of Boolean
expression using K- Map.

2.2. BOOLEAN ALGEBRA

Boolean Algebraisaset B={a,b,c,...... } containing at least two distinct elements on which two
binary operations namely logical addition called OR and logical multiplication caled AND
operation along with a unary operation NOT are defined. It is used to analyse and simplify the
digital circuits . It uses only the binary number O and 1 .Boolean Algebra was invented by
George Boole in 1854.

Rules in Boolean Algebra :In Boolean Algebra variable used can have only two values 0 and
1.0 for low and 1 for high. complement of a variable is represented by a bar over the variable.
The complement of O is1 and 1is 0 .Oring of two variable is represented by a + sign between
them. logical Anding of two or more variables is represented by writing a dot between such as
A.B.C.

2.2.1 Laws of Boolean Algebra
There are following type of laws in Boolean algebra.

1. Idempotent Law: It isanimportant law it states that
a) AL A=A
b) A+A=A

2. Commutative law: Commutative law states that changing the sequence of the variables does
not have any effect on the output of alogic circuit.

a) A+B=B+A
b) A.B=B.A

3. Associative law : This law states that the order in which the logic operations are performed is
irrelevant astheir effect is the same.

a) A.(B.C)=(A.B).C

b) A+(B+C)=(A+B)+C

37

4. Distributive law

Distributive law states the following condition.
a) A.(B+C)=A.B+A.C
b) A+(B.C)=(A+B).(A+C)

5. AND law

These laws use the AND operation. Therefore they are called as AND laws.

()A.0=0 (ii)A1=A
(iii)) AL A=A (iv)AA=0
6. OR law

These laws use the OR operation. Therefore they are called as OR laws.
()A+0=A (ii)A+1=1
(iii)A+A=A (ivVJA+A=1

7. Inversion law

This law uses the NOT operation. The inversion law states that double inversion of a variable
resultsin the original variable itself.

(A’)y=A
8. Identity law
If Oisadditive identity and 1 isthe multiplicative identity of Boolean algebra.

() A+l=1=1+A
(i) A.0=0.A=0

9. Absorption Law
(i) A+(A.B)=A
(i) A.(A+B)=A

2.2.2 De Morgan’s Theorems
De Morgan has suggested two theorems which are extremely useful in Boolean Algebra. The
two theorems are discussed below.

38

De Morgan Theorem 1.
(A.B)’=A"+B’

The left hand side (LHS) of this theorem represents a NAND gate with inputs A and B, whereas
the right hand side (RHS) of the theorem represents an OR gate with inverted inputs.

MAND 8 —i —-I;

NAND — Bubbled OR

S Y-A+DB

Subbled OR

De Morgan Theorem 1 Diagram

Table showing verification of the De Morgan's first theorem —

A| B|AB|A |B | A+B
9 1 I IO I T 1
O [l | 2 |2 | 6 1
T T T 7 1
1 =% | ol 0| 0 0

De Morgan Theorem 1 Verification Table
DeMorgan Theorem 2:

The LHS of this theorem represents a NOR gate with inputs A and B, whereas the RHS
represents an AND gate with inverted inputs.

(A+B)=A"B’

This AND gateis called as Bubbled AND.

39

A — t— A
A= Y-A:B ’ _l——_

-
3

.—)._\
B—_ A o £ J_
NOR 3 \{ a B

NOR = Bubblad AND

& Famn

Bubbled AND

De Morgan Theorem 2 Diagram

Table showing verification of the De Morgan's second theorem —

A| B|A+B|A | B | A.B
olo |1 [1 |1 1
| S I 0
I R [| [0
1110 [0 |0 0

De Morgan Theorem 2 Verification Table

2.3INTRODUCTION OF LOGIC GATES

Logic gates gate is an elementary building block of a digital circuit.Most logic gates have two
inputs and one output at any given moment. Every input isin one of the two conditions boundary
conditions low or high represented by the two different voltage levels.

A variety of logic gates are commonly used in digital computer system .Each gate has a distinct
graphic symbol and its operation can be described by means of an algebraic expression.The input
output relationship of binary variables for each gate can be represented in tabular form by the
truth table. There are three basic logic gates AND ,OR,NOT

1. AND Gate

And gate is so named because , if 0is “fase” and 1 is called “true” the gate act is the same way
as the logical and operation. The following illustration and table shows the circuit symbol and

40

logic combinations for an AND gate. The output is true when both inputs are true otherwise the
output is false.

The algebraic operation symbol of the AND gate function is same as multiplication
symbol of ordinary arithmetic .We can use either a dot between the variables or concatenate the
variables without an operation symbol between them. According to the truth table, if any of the
input is zero then output isalso O.

Logic Diagram Truth table
Inputs Qutput
A B | AB
0| 0 0
0 1 0
A~ IR
— ¥ AR
B — ¢ |4] a
2. OR Gate

The OR gate gets its name from the fact that it behaves after the fashion of the logical inclusive
“OR”. The output is “true” if either or both of the inputs are “True” .If both inputs are “false”
then the output is “false”. The truth table and the logic diagram is shown in figure below.

Its operation symbol is + similar to arithmetic addition it is if any of the input value is 1 the
output isaso equal to 1.

Logic Diagram Truth table
Inputs Output
A|l B |A+B
0|0 0
0| 1 1
== 1 (0 1
A v el all
B—=£ 3 G s ¢ 1.

41

3.NOT Gate

A logical inverter sometimes called a “NOT” gate has only one input. It reverses the logic state.
The algebraic equation used for logic complement is either a prime or a bar over the variable
symbol. The triangle symbol also shows the “NOT” gate. It is used to complement the input if
input is zero it becomes 1 and if it is 1 it becomes zero. The logic diagram and the truth table are
shown in figure below

Logic Diagram Truth table

Inputs | Output

A 2

N 0 1

A o —Y e ~
I 1 0

3. NAND Gate

The NAND gate operate as an AND gate followed by and NOT gate .It acts in the manner of
the logical operation “AND” followed by a negation. The output is “false” if both the inputs are
“true”. Otherwise, the output is “true”.

Thelogic symbol and truth table as shown in figure below

Logic Diagram
A B, A
s —uy P o— S v
Truth table
Inputs Output
A| B | AB
0| 0 1
(2 I8 [¢ 1
1|0 1
r | 0

42

4. Nor Gate
The NOR gate is a combination of OR gate followed by an inverter
inputs are “false”. Otherwise, the output is “false”.

The logic symbol and truth table as shown in figure below.

Logic gate

Truth table

Inputs Qutput

B

B

l—‘lO PO |m

+
2
0
0
0,,

Ry o

. Its output is “true” if both

Both NAND gate and NOR gate are sometimes called Universal gates as any logical circuit can

be drawn using only NAND gates or using only NOR gates. Both N
may have more than two inputs and the output is always the compl
function respectively.

6.XOR and XNOR

AND gates and NOR gates
ement of the AND or OR

The XOR (Exclusive OR) gate acts in the same way as the logica “either/ or”.The output is
“true” if ether, but not both, of the inputs are “true”. The output is “false” if both inputs are

“false” or if both inputs are “true”.

The XNOR (exclusive NOR) gate is a combination of XOR gate followed by an inverter. Its
output is true if the inputs are the same and “false” if the inputs at different. The truth table

logical expression is shown in figure below.

43

Logic gate Truth table

Inputs Output
A| B |A(+)B
b | 0j0]| O
—_—
KI ~! _ Y 0|1 1
B —_— y / 1|0 Lo
i ol L 0

7.XNOR GATE

XNOR gate is a specia type of gate. It can be used in the half adder, full adder and subtractor.
The exclusive-NOR gate is abbreviated as EX-NOR gate or sometime as X-NOR gate. It has n
input (n >= 2) and one outpui.

LOGIC GATE TRUTH TABLE

Inputs Output
A| B |A(-)B

0| 0 1

A ST o 2

) J—— Y 10| 0
B — A — e

— s 0 [£ 1

2.4 SUM OF PRODUCT FORM(SOP) AND PRODUCT OF SUMS FORM (POP)
A Boolean expression can be represented in either of the following forms

1. Sum of product form abbreviated as SOP form
2. Product of sums form usually abbreviated as POS form
1. SOP Form

SOP form of a Boolean expression which consists of sum of products of various literals either in
product or complemented form is called sum of product form of the expression.

For exampl e the following Boolean expression is in sum of product form

44

X.Y'+Y X

The first term is X and Y’ which is product of two Boolean variable hence it is product on the
second termisY into X isaso aproduct term.

2.POS Form

POS form of Boolean expression is consisted of product of sums of various letters either indirect
or complemented form is called product of sums form of the expression .

For example the following expression isin POS form
(X+Y)+(X+Y+Z)

Minterm :- A product is in sum of product form of a Boolean expression representing a
Boolean function of and variable is called a Minterm if it compromises of exactly and literals
each literal appearing only once either in direct or complemented form.

For example
F(X,Y,2)=X.Y.Z+X'Y+YZ
Maxterm

A Sum term in product of sums (POS) form of a Boolean expression representing a Boolean
function of n variables is called a Maxterm if it consists of exactly n literals, each literal
appearing only once, either in direct are complemented form.

Consider the following function
FOX,Y,Z)=(X+Y +2).(X+Y)

Standard order there are two canonical forms sum of product form and product of maxterms for
stating any Boolean expression canonical form of a Boolean expression is any Boolean
expression is said to be in canonica form or normal form

1. If each term in the expression consists of exactly and variables are literals
2. A literal either in direct or complemented form appears only once and only once in each term

Function is in SOP form is canonical SOP form if each of the product terms contain each and
every variable or its complement each term in canonical SOP form is called a minterm.

If function is in POS form or canonical POS form if each of the sometimes contains each and
every variable or its complement each term in canonical POS is called a maxterm.

45

Simplification of Boolean Expressions

Boolean Expression :-A Boolean expression like an algebraic expression consists of Boolean
variables, constants connected by suitable Boolean operators +,. aong with parenthesis.

Example:

() A+B.C+A’C+AB
(i) (A+B’).(B+C)

Simplification of boolean expression can be done using

(i) Boolean algebra
(i) Karnaugh Map

Boolean rulesfor Simplification

Boolean agebrarules are used to simplify Boolean expression .For example

Expression Rule(s) Used

AB(A +B)(B + B) Origina Expression

AB(A +B) Complement law, Identity law.
(A+B)(A+B) De Morgan's Law

Distributive law. This step uses the fact that or distributes over and. It
can look a bit strange since addition does not distribute over

A +BB multiplication.
A Complement, Identity.
Expression Rule(s) Used

(A+C)(AD+AD)+AC+C Original Expression
(A+CAMD+D)+AC+C Distributive.

(A+CA+AC+C Complement, Identity.
A(A+C)+C)+C Commutative, Distributive.
AA+C)+C Associative, Idempotent.
AA+AC+C Distributive.

A+(A+T)C Idempotent, Identity, Distributive.
A+C [dentity, twice.

46

25INTRODUCTION OF KARNAUGH MAP

The process of reducing a Boolean function to the minimal form by using the laws of Boolean
algebra is a tedious one. A better and more elegant way to reduce a Boolean function to the
minimal form is with the help of graphica method called Karnaugh Map method. It is a
systematic method to reduce a switching function to the minimal form. K- Map provides an
alternative technique for representing Truth Tables.

Types of K Map

1. 2variableK -Map
2. 3Vaiablek -Map
3. 4VariableK- Map

1.Two Variable K Map-
e« Two variable K Map isdrawn for aboolean expression consisting of two variables.
« Thenumber of cells present in two variable K Map = 2° = 4 cells.
e So, for aboolean function consisting of two variables, wedraw a2 x 2 K Map.
Two variable K Map may be represented as-

OR

Two Variable K Map

Here, A and B are the two variables of the given boolean function.

2.ThreeVariable K Map

Three variable K Map is drawn for a boolean expression consisting of three variables.

The number of cells present in three variable K Map = 2° = 8 cells.
So, for aboolean function consisting of three variables, we draw a2 x 4 K Map.

47

Three variable K Map may be represented as-

BC
A BC BC BC BT
I 0 1 3 2
A
4 5 7 6
OR
BC
A 00 01 11 10
0 0 1 3 2
1
4 5 7 6

Three Variable K Map

Here, A, B and C are the three variables of the given boolean function.

3.Four VariableK Map
Four variable K Map is drawn for a boolean expression consisting of four variables.

« The number of cells present in four variable K Map = 2* = 16 cells.
« So, for aboolean function consisting of four variables, wedraw a4 x 4 K Map.
Four variable K Map may be represented as-

48

>

w
0l
o|

CD

>

()

(%)

[=]

12

14

w

10

CcD

AB 00

OR

01

11

10

00 .

(1)

N

01

[=}]

11
12

14

10

w

1

10

Four Variable K Map

Here, A, B, C and D are the four variables of the given boolean function.

Reducing a Boolean function to the Minimal form using K-Map

Once the K-map has been drawn to represent the given Boolean function the next job isto reduce
this function to the minimal form. A function is said to be in minimal form if

(1) It is represented by the minimum number of literals.
(i) It has a minimum number of terms.

To reduce the Boolean function to the minimal form, follow the following rules

There are the following steps to find the minterm solution or K-map:

Step 1:

49

Firstly, we define the given expression in its canonical form.
Step 2:

Next, we create the K-map by entering 1 to each product-term into the K-map cell and fill the
remaining cells with zeros.

Step 3:

Next, we form the groups by considering each onein the K-map.

o | o (1 | 1)

(1 1)] 0 0

Notice that each group should have the largest number of ‘ones. A group cannot contain an
empty cell or cell that contains 0.

(o |1 [1 [0) o (G_[1)|o

Incorrect Correct

In agroup, thereis atotal of 2" number of ones. Here, n=0, 1, 2, ...n.

Example: 2°=1, 2'=2, 2°=4, 2°=8, or 2*=16.

o (0 [1] 1) o (DT T 1)

Incorrect Correct

We group the number of ones in the decreasing order. First, we have to try to make the group of
eight, then for four, after that two and lastly for 1.

50

(1 1 | 1 1) (1 1 | 1 1}
G111 L1 1 | 1 1J

Incorrect Correct

In horizontally or vertically manner, the groups of ones are formed in shape of rectangle and
sguare. We cannot perform the diagonal grouping in K-map.

0 Q\ 0 | o o [(1)]| o | o
N
o (11 15) 0 0 | (1 1) | 0

Incorrect Correct

The elementsin one group can also be used in different groups only when the size of the group is
increased.

(v |1 [1 [1) ([[1)] 1)

o [(1 1) o 0 1 1 0
N
Incorrect Correct

The elements located at the edges of the table are considered to be adjacent. So, we can group
these elements.

'ﬂooﬁ'
[/ oo |\1]

51

We can consider the 'don't care condition' only when they aid in increasing the group-size.
Otherwise, 'don't care' elements are discarded.

(1 [{r [1] | 1]

>< 1 > 0
AR AN
¥ A
Neglect Consider

Step 4:

In the next step, we find the boolean expression for each group. By looking at the common
variablesin cell-labeling, we define the groups in terms of input variables. In the below example,
thereisatotal of two groups, i.e., group 1 and group 2, with two and one number of 'ones.

In the first group, the ones are present in the row for which the value of A is 0. Thus, they
contain the complement of variable A. Remaining two 'ones’ are present in adjacent columns. In
thes e columns, only B term in common is the product term corresponding to the group as A'B.
Just like group 1, in group 2, the on€e's are present in arow for which the value of A is 1. So, the
corresponding variables of this column are B'C'. The overall product term of this group isAB'C'.

¥ T
V.BC 00 01 a4 40 Group1
0 i 3 2
of 0 | 0 (0| 1)
2 5 7 6
1 @ 0 0 0

Group 2

Step 5:

Lastly, we find the boolean expression for the Output. To find the simplified boolean expression
in the SOP form, we combine the product-terms of all individual groups. So the simplified
expression of the above k-map is asfollows:

A'+AB'C'

52

Let's take some examples of 2-variable, 3-variable, 4-variable, and 5-variable K-map examples.

Examplel: Y=A'B' + A'B+AB

o| (1 ?J

11 1

Simplified expression: Y=A'+B

Example2: Y=A'B'C'+A' BC'+AB' C'+AB'C+ABC'+ABC

C
N 01 1 10

N 00
= 0 0 1 3 2]
0 \ 1 /1
2 5 7 6
U 1 1 1
47 N |

Simplified expression: Y=A+C'

Example3: Y=A'B'C' D'+A"' B' CD'+A' BCD'+A' BCD+AB' C' D'+ABCD'+ABCD

53

0 1 3 2
or] O { 1 1 1 0

4 5 7 6
al o |l o

12 13 15 14
0| 1) 0 0 0

8 9 1 Lﬂ]

Simplified expression: y=bd+b'd’

Problems Based on Karnaugh Map
Problem-01:

Minimize the following boolean function-
F(A, B, C,D)=32m(0, 1,2, 5,7,8,9, 10, 13, 15)

Solution-

Since the given boolean expression has 4 variables, so we draw a4 x 4 K Map.

« Wefill the cells of K Map in accordance with the given boolean function.
e Then, we form the groups in accordance with the above rules.

Then, we have-

CcD
AB

0
o
[g)
o
(2]
o
(2]
(w)

AE| 1 1 1

0 1 3
AB 1 1

4 5 7 6
AB 1 1

12 3 15 14
AE| 1 1

8 9 11 10

54

Now,

F(A, B, C, D)

=(A’B+ AB)(C’'D + CD) + (A’B’+ A’B + AB + AB’)C’D + (A’B’ + AB’)(C’D’ + CD’)
=BD+CD+B’D’

Thus, minimized boolean expression is-

F(A, B, C,D)=BD + C’D + B’'D’

Problem-02:

Minimize the following boolean function-
F(A, B, C,D)=32m(0, 1,3, 5,7,8,9, 11, 13, 15)

Solution-

Since the given boolean expression has 4 variables, so we draw a4 x 4 K Map.
Wefill the cells of K Map in accordance with the given boolean function.
Then, we form the groups in accordance with the above rules.

Then, we have-

cD
AB TD T©bD cD ch
2Bl 1 1 1
& 1 3 2
AB 1 1
4 5 7 6
AB 1 |
12 13 5 14
AE | | 1 1 1
8 - 1 10
Now,
F(A, B, C, D)

=(A’B’ + A’B + AB + AB’)(C’D + CD) + (A’B’ + AB’)(C’D’ + C’D)
=D+BC’

55

Thus, minimized boolean expression is-

F(A,B,C,D)=B’C’ +D

Problem-03

Minimize the following boolean function-

F(A,B,C,D)=3m(l, 3,4, 6,8,9, 11, 13, 15) + 2d(0, 2, 14)

Solution

Since the given boolean expression has 4 variables, so we draw a4 x 4 K Map.

o Wefill the cells of K Map in accordance with the given boolean function.
e Then, we form the groups in accordance with the above rules.

Then, we have-

cD
AB TD ,CD; o©D cD
2B || x 1 1 X
- 1 3 2
A | 1 1
4 5 7 6
AB 1 1 X
12 13 N5 14
AE | [1 7]
8 9 1 10

Now,
F(A, B, C,D)

= (AB + AB’)(C’D + CD) + (A’B’ + AB’)(C’D + CD) + (A’B’ + AB’)(C’D’ + C’D) + (A’B’ +
A’B)(C’D’ + CD)

=AD+B'D+BC’+A’D’

Thus, minimized boolean expression is-
F(A, B, C, D)= AD + B’D + B’C’ + A’D’
Problem-04:

Minimize the following boolean function-

56

F(A, B, C) =2m(0, 1, 6, 7) + 2d(3, 5)
Solution-
Since the given boolean expression has 3 variables, so we draw a2 x 4 K Map.

o Wefill the cells of K Map in accordance with the given boolean function.
o Then, we form the groups in accordance with the above rules.

Then, we have-

BC
A BC BC BC BC
— |1 1] X
A — 1 3 2
A X]]
4 5 — 6

Now,

F(A, B, C)

=A'(B’C’ +B’C) + A(BC + BC)
= A’B’+ AB

Thus, minimized boolean expression is-
F(A,B,C)=AB+A’B’
2.6 SUMMARY

1.https://www .javatpoint.com
2.http://gpmeham.edu.in
3.https://www.math-only-math.com
4.https.//atozmath.com

5.Morris Mano of Computer System Architechture.

57

6.Aharon Y adin of Computer System Architechture.

7.Sgjjan Singh and Gurpreet Sandhu of Computer System Architechture.

2.7 PRACTICE QUESTIONS

Key Exercise of DeMorgan’s theorem

1.Convert the following SOP expression to an

equivalent POS expression.
ABC+ABC+ABC+ABC+ABC

A.

B.

A+B+C)A+B+C)A+B+C)
(A+B+CA+B+CHA+B +0C)

(A+B+CIA+B+CIHA+B+0)

(A+B+CA+B+C)A+B+C)

2.Derive the Boolean expression for the logic
circuit shown below:

EL}}F}

:)

E

A. C(A+B)DE
B. [cta+B)D+E|
C. |[fcta+efE]

D. ABCDE

3.Which of the following expressionsisin the

sum-of-products (SOP) form?

A.

B.

C.

(A+B)(C+D)
(A)B(CD)
AB(CD)

AB +CD

4.0ne of De Morgan's theorems states
that X + Y =X-Y . Simply stated, this means that
logically there is no difference between:

a NOR and an AND gate with inverted

A .
inputs
B a NAND and an OR gate with inverted
~ inputs
c an AND and a NOR gate with inverted
" inputs
D a NOR and a NAND gate with inverted

inputs

5.Applying DeMorgan's theorem to the

expression ABC we get

A.
B.

A+B+C

A+B+C

6.An AND gate with schematic "bubbles’ on its
inputs performs the same function as

an__ gate
A. NOT

58

javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;

C. A+B+cCC B. OR
D. AB+C) C. NOR
D. NAND
8.A truth table for the SOP
7.For the SOF expron ABC+ABC+ABC has how many

expression A§C+EBC+ABE, how many
1sarein the truth table's output column?

Al

B. 2
C. 3
D. 5

input combinations?

Al
B. 2
C. 4
D. 8

9.How many gates would be required to
implement the following Boolean expression
before simplification? XY + X(X + Z) + Y (X
+27)

Al
B. 2
C. 4
D. 5

10.Determine the values of A, B, C, and D that
make the product term ABCD equal to 1.

A. A=0,B=1,C=0,Db=1
B. A=0,B=0,C=0,D=1
C. A=1,B=1,C=1,D=1

D. A=0,B=0,C=1,D=0

11.Which Boolean agebra property alows us
to group operands in an expression in any
order without affecting the results of the

12.Applying DeMorgan's theorem to the

expression X+ Y1 +Z e get

operation [for example, A + B = B + A]? A X+WZ

A. associative B. (Xx+¥)z

B. commutative C. ®+v)zZ

C. Boolean D. (x+¥)zZ

D. distributive
13.Use Boolean agebra to find the most | 14.Converting the Boolean expression LM +
simplified SOP expression | M(NO + PQ) to SOP form, we get

59

javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;

for F=ABD + CD + ACD + ABC + ABCD.
A. F=ABD+ABC+CD

B. F=CD+AD
C. F=BC+AB

D. F=AC+AD

A. LM +MNOPQ
B. L+MNO+MPQ
C. LM +M +NO+MPQ

D. LM+ MNO+MPQ

15.A Karnaugh map is a systematic way of | 16.Applying the_ distributive law to the
reducing which type of expression? expression AE +C+D) weget

A. product-of-sums A, AB + AC + AD

B. exclusveNOR B ABCD

C. sum-of-products C. A+B4C4+D

D. those with overbars D. AR 4 AT 4 AD

17.Derive the Boolean expression for the | 18.Mapping the standard SOP

logic circuit shown below:

A. CA+CB+(CD

B. C(A + BID
C. CclA+B)+D

D. CA+CB+D

expression ABCD+ABCD+ABCD+ABCD

, We get

60

javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;

cD

AB oo 01 10 11
oo 1
01 1
10 1
11 1
(A)
CcD
AB 0o 01 10 11
oo 1 1
01
10 1
11 1
(B)
cD
AB 0o 01 10 11
oo 1
01 1
10
11 1 1
(C)
cD
AB oo 01 10 11
oo 1 1
01
10 1
11 1

(D)

19.Applying DeMorgan's theorem to the
expression (W + X +Y)Z we get

1]

A WXY

20.Determine the binary values of the variables

for the following standard POS

which

expression is equal to 0.

61

javascript:%20void%200;

(0O+1+0)(1+0+1)
(1+1+1)(0+0+0)
(0+0+0)(1+0+1)

(1+1+0)(1+0+0)

javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;
javascript:%20void%200;

Bachelor of Computer Applications (BCA)
COMPUTER SYSTEM ARCHITECTURE

UNIT I11: COMBINATIONAL CIRCUITSAND SEQUENTIAL CIRCUITS

STRUCTURE

3.0 Objective

3.1 Decoders

3.2 Encoders

3.3 Multiplexer
3.4 De-multiplexer
3.5 Half adders
3.6 Full adders
3.7 Flip-flops

3.8 Counters

3.9 Memory units
3.10 Practice Questions

63

3.0 OBJECTIVES

» To understand the basic concept of Decoders and Encoders
» Todesign the block diagram, truth table and logic diagram for MUX and De-MUX
» To design the block diagram of Half Adders and Full Adders using truth table and
logic diagrams.
» To describe Flip- Flops and their types.
» Todiscuss Synchronous and Asynchronous Counters
» To understand the concept of memory units like RAM and ROM.
3.1 DECODERS

A decoder is a combinational circuit which converts n lines of input into 2" lines of output.

For example if we have 2 inputs then there will be 4 outputs. Similarly for 3 inputs, 8

outputs, Decoder performs the reverse operation of the Encoder. At a time, only one input

line is activated for simplicity. The produced 2"-bit output code is equivalent to the binary

information. 2 to 4 decoder is shown below in the block diagram.

L =
L L

R - 2 to 4 i

Decoder
=y

=y

In 2 to 4 decoder, one E (enable) and 2 inputs A; and A are used, a decoder will be active

only when E is one, and then there will be four outputslike Yo, Y1, Yo and Y.

64

Enable INPUTS OuUTPUTS
E Aa Aq \E' Y3 Y1 Yo
0 X X 0 0 0 0
1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0
1 1 1 1 0 0 0

The Boolean function for YO is represented as:

Yo=E.A1’A¢’, Y1=EA1’Ao, Y2=EA1A0’, Y3=A1A0 and thelogic diagram is shown in the
figure below for 2 to 4 decoder.

a HI__ = _{ B
i I 5
=l

| i =3

3.2 ENCODERS

An encoder is a combinationa circuit that converts binary information in the form of a

2V input lines into N output lines, which represent N bit code for the input. For simple
encoders, it is assumed that only one input line is active at atime. For example if we have 4
inputs there will be 2 outputs, similarly for 8 inputs there will be 3 outputs. 4 to 2 encoder is

shown below in the block diagram.

= ———
) i = 4 to 2 1

Encoder | 5% a-

Four inputs Yo, Y1, Yz and Y3 and two output’s Ag and A; is shown in the table below.

65

Inputs Outputs

¥a Yz ¥4 Yo | A
4] o 0 1 l l
. [1 G B 1
] 1 0 L 1 L]
1 0 0 0] 1

The Boolean expression is evaluated from table as: A1= Y3+Y, Ap= Y3+Y 1. The circuit
diagram is shown below for 4 to 2 encoder.

3.3MULTIPLEXER

Multiplexer is also a combinationa circuit that can have maximum of 2" data inputs, ‘n’
selection lines with single output line. Any one of these data inputs will be active based on
the values of selection lines. 4x1 Multiplexer has four data inputs I3, I, 13 and lo, two
selection lines S; and Sy and one output Y. The block diagram of 4x1 Multiplexer is shown
in the following figure.

Y

¥

|

Iy —a Multiplexer

1

54 =i

P{.

One of these 4 inputs will be connected to the output based on the combination of inputs

present at these two selection lines. Truth table of 4x1 Multiplexer is shown below.

66

Selection Lines Output

8, Sy ¥
) o lo
0 1 I
1 i |

. |

I3

From Truth table, we can directly write the Boolean function for output, Y as

Y = SIFSDFID + 5115[]11 + 5150112 + 515013

— >

34DE-MULTIPLEXER

It is also a combinational circuit that accomplishes the opposite operation of Multiplexer. It
has single input, ‘n’ selection lines and maximum of 2" outputs. The input will be connected
to one of these outputs based on the values of selection lines. Asthere are ‘n’ selection lines,
there will be 2" possible combinations of zeros and ones. So, each combination can select
only one output. For example 1X4 De-Multiplexer block diagram is shown in the block

diagram which has one input and four outputs with two selection lines

It has one input I, two selection lines, s; and spand four outputs Y3z, Y, Yiand Yo.
The block diagram of 1x4 De-Multiplexer is shown in the following figure.

67

1 x4
Da-Multiplexer

The single input ‘I’ is being connected to one of the four outputs, Y3to Y based on the

values of two selection lines s; and SO as shown in the Truth table. The logic function is
generated using as Y3=S; S I, Y =51’ 1, Y1=S1Sol, Yo=S; ‘S’ | , or it may be written

using0as Sy’ and 1 as Sp .

Selaction Inputs

5-1 5n

0 |

Thelogic diagram for DEMUX is shown below:

=

68

Outputs
Y3 Wy o
o) 1
o | 1
| Ly |
0 0 0

35HALF ADDERS

Half Addersisacombinational circuit which can add maximum two inputs and provide one
output as SUM and other output as Carry. For example in the block diagram A and B are
inputs and two outputs are Carry and Sum.

A, " —5Sum
Half Addar

B - = Carry

The truth table of Half Addersis shown below with two inputs A and B. Sum is performed
after adding A and B like 0+0=0, 0+1=1, 1+0=1 and 1+1 isO with carry 1.

Inputs Outputs
A B Sum Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

The output of Sumis A Ex-or B, Carry is A And B which is represented in the logic diagram
shown below:

A i SUm

1]

Carry
]

3.6 FULL ADDERS

The full adder is a combinational circuit which can add more than two bits at the same time.
For example in the block diagram there are three inputs A, B and a carry input C;y and two
outputs Coyt and SUM.

69

AS

—4 C(:‘l”
FULL

B &1 ADDER

The truth table for full adder is shown below like if A=0, B=, Cin=0, Swill become 0 and
Cout aso be 0. Similarly, other inputs will be evaluated.

Inpurt= it paries

ey =] Lot e L Al |

) i S i3 2

] [] 1 L} 1

L} 1 L) [1

£l 1 1 1 o
£ (] [] i

1 2 1 2

The output of Swill be Ex-Or operation between A, b and CIN, Cout isthe AND operation
between AB+BCin+ACin.

R
J

3.7 FLIP-FLOPS

Flip flop is formed using logic gates, which are made of transistors. Flip flops are considered

as the basic building blocks in the memory of electronic devices. Each flip flop is capable to
store one bit of data. Flip — flops have two stable states and therefore they are also considered

70

as bistable multi-vibrators. The two stable states of flip-flops are High (logic 1) and Low
(logic 0).The term flip — flop actually means that they can switch between the states under the
impact of a control signal (clock or enable). In other words, they can ‘flip’ to one state and

‘flop’ back to other state.

Typesof flip flops
As per the operation of flip-flops, they are basically divided into following four types:
e SRflipflop

e Dflipflop
e JKflipflop
e Tflipflop

3.7.1 SR Flip Flop

The SR flip-flop is the basic flip-flop among al other flip-flops. All the other flip flops are
developed after SR-flip-flop. SR stands for SET and RESET. This can also be termed as RS
flip-flop. The only differenceis RSisinverted SR flip-flop.

PR

o ol 1 0 1 0 Qissetto 1

1 1 1 0 No change

4R) 3 S ,
RESET Iaverted 0 1 0 1 Qissettol
' Output
J 1 1 0 1 No change
Gwxs 0 0 1 1 Invalid
S-R Hipflop
3.7.2Dflip flop

In the SR flip flop, sometimes an uncertain state occurred, which can be eluded by using D
flip flop. D stands for “Data” in D flip-flop and is basically created from SR flip flop. The
two inputs (S &R) of the clocked SR flip flop are connected to an inverter. It is one of the
most widely used flip — flops. It has a clock signal (Clk) as one input and Data (D) as other.
There are two outputs which complement each other. The symbol of D flip — flop is shown
below.

71

Qs 0 0 Q Q No change
LK 1 0 0 1 Reset Qto O
’-J 1 1 1 1 SetsQto 1l
D Flip-Flop

Truth Table of D Flip flop

3.7.3 J-K Flip Flop

JK flip — flop is named after Jack Kilby, an electrical engineer who developed IC. A JK flip —
flop isavariation of SR flip — flop. In this, the Jinput is similar to the set input of SR flip —
flop and the K input is similar to the reset input of SR flip — flop. The condition J =K =1
which isnot allowed in SR flip — flop (S= R = 1) isinterpreted as a toggle command. The JK
flip flop has two datainputs J and K, one clock signal input (CLK) and two outputs Q and Q’.

Clock J K Q Q State
—t Qe .
- / Ot 1 0 0 Q Q No change
1 0 1 0 1 Reset Qto 0
o . Q' 2 -
? =R 1 1 0 1 0 SetsQto 1
Ourpur
1 1 1 - - Toggles
Clock &—
JK Flipflop Truth Table of XK flip flop

3.74T Flip Flop
T flip flop is also known as “Toggle Flip — flop”. Toggle is to change the output to
complement the previous state in the presence of clock input signal. The T flip flop has T

input, one clock signal input (CLK) and two outputs Q and Q’.

0 0 0

72

0 1 0
a2 = 1 O
T Flip flop Truth Table of T Flip flop

3.8 COUNTERS

A distinctive type of sequential circuit used to count the pulse is known as a counter. In other

words, a group of flip flops where the clock signal is applied is known as counters. The
counter is one of the broadest applications of the flip flop. Based on the clock pulse, the
output of the counter contains a predefined state. The number of the pulse can be counted

using the output of the counter. The truth table is represented as follows:

Clock | Counter output | State | Decimal
Qe Q. number | counter |

output
Initially 0 0 - 0
1= 0 1 1 1
2m 1 0 2 2
3 1 1 3 3
4th 0 0 4]

There are the two types of counters:

o Asynchronous Counters

o Synchronous Counters

3.8.1 Asynchronousor ripple counters

An asynchronous counter is also termed as the ripple counter. Separately from the T flip flop,
JK flip flop can aso be used in a 2-bit asynchronous counter by setting both of the inputsto 1
permanently. The external clock pass to the clock input of the first flip flop, i.e., FF-A and its
output, i.e., is passed to clock input of the next flip flop, i.e., FF-B. The diagram of the 2-

bit Asynchronous counter in which we used two T flip-flops is shown below:

73

https://www.javatpoint.com/jk-flip-flop-in-digital-electronics

Block Diagram

’ Logic 1
High High L L
T Q T Qs[—Output
J Set q| o o | Set Q—Q,
(k—® FFA FF-B
Clk——d
— K o Q — K ar Q
Signal Diagram
1 1 2 3 4 5
Clk
0
1
Qo 0 ! 0 1
! o 0 1 1
Q,
0 0 1 2 3 o
Operation
Condition Operation

1. When both theflip flops The outputs of both flip flops, i.e.,

arein reset condition Qa Qg, will beO.

2. Whenthefirst negative The first flip flop will toggle, and the output of this flip
clock edge passes flop will change from O to 1. The output of this flip flop
will be taken by the clock input of the next flip flop. This

output will be taken as a positive edge clock by the second

flip flop. This input will not change the second flip flops

output state because it is the negative edge triggered flip

flop.
So,QA=1andQB=O
3. When the second Thefirst flip flop will toggle again, and the output of this

negative clock edgeis flip flop will change from 1 to 0. This output will be taken

74

applied as anegative edge clock by the second flip flop. This input
will change the second flip flop's output state becauseit is
the negative edge triggered flip flop.
S0, Qa=0and Qg = 1.
4. When thethird negative ' The first flip flop will toggle again, and the output of this
clock edge is applied flip flop will change from O to 1. This output will be taken
as a positive edge clock by the second flip flop. This input
will not change the second flip flop's output state because it
is the negative edge triggered flip flop.
So,Qa=land Qg =1
5. When the fourth Thefirst flip flop will toggle again, and the output of this
negative clock edgeis flip flop will change from 1 to 0. This output will be taken
applied as a negative edge clock by the second flip flop. This input
will change the output state of the second flip flop.
So,Qa=0and Qg =0

3.8.2 Synchronous counters

In the asynchronous counter, the present counter's output passes to the input of the next
counter. So, the counters are connected like a chain. The drawback of these counters is that it
creates the counting delay, and the propagation delay during the counting stage.
The synchronous counter is designed to remove this drawback. In the synchronous counter,
the same clock pulse is passed to the clock input of all the flip flops. The clock signals
produced by all the flip flops are the same as each other. The diagram of a 2-bit synchronous
counter is shown below in which the inputs of the first flip flop, i.e., FF-A, are set to 1. So,
the first flip flop will work as a toggle flip-flop. The output of the first flip flop is passed to
both the inputs of the next JK flip flop.

75

Logical Diagram

High
Logic 1
Set Set gl
—1% Js Qs Jaf—) e QQ) e QQz
FF-B » FF-A |
kel Ka|— Kar @ K cr Q
FF-0 FF-1 FF-2
Clk Clk—e .
Signal Diagram
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 0

Operation

Condition

1. When both the flip flops

arein reset condition
2. When the first negative

clock edge passes

3. When the second

negative clock edgeis

applied

Operation

The outputs of both flip flops, i.e., Qa Qs, Will be 0.
S0,Qa=0and Qg =0

Thefirst flip flop will be toggled, and the output of thisflip
flop will be changed from 0 to 1. When the first negative
clock edge is passed, the output of the first flip flop will be
0. The clock input of the first flip flop and both of itsinputs
will set to 0. In this way, the state of the second flip flop
will remain the same.
S0,Qa=1and Qg =0

Thefirst flip flop will be toggled again, and the output of
thisflip flop will be changed from 1 to 0. When the second
negative clock edgeis passed, the output of the first flip
flop will be 1. The clock input of the first flip flop and both
of itsinputs will set to 1. In thisway, the state of the

second flip flop will change from O to 1.

76

S0, Qa=0and Qg =1
4. Whenthethird negative The first flip flop will toggle from O to 1, but a this
clock edgeis applied instance, both the inputs and the clock input set to O.
Hence, the outputs will reman the same as before.
S0, Qa=1and Qg =1
5. When the fourth Thefirst flip flop will toggle from 1 to 0. At thisinstance,

negative clock edgeis
applied

the inputs and the clock input of the second flip flop set to
1. Hence, the outputs will change from 1 to O.
So, QA=OandQB=O

39MEMORY UNITS
Main memory is divided between RAM and ROM, Where RAM size for example is shown

in the block diagram is 128X8, 7 address lines and 8 data lines are used to represent this
memory. CS1 and CS2 are chip select signals, RD and WR are read and write pins.

Chip select1 —— C31

Chip select2 — CS52
Read —— RD "ER?Q:JE <«——» 8-bit data bus
Write —— WR

7-bit address —— AD Y

ROM size for example is taken as 512X 8, indicates 9 address lines and 8 data lines. CS1 and

CS2 are chip select signals.
Chip select 1 —— CS1
Chip select 2 —— CS2 512 x 8
x - _ -
ROM 8-bit data bus
9-bit address—— AD 9

3.10 PRACTICE QUESTIONS

Q1. Differentiate between Encoders and Decoders.

Q2. What are the applications of Multiplexer and DE multiplexer?

Q3. Design Full adder using two Half adders.

77

Q4. Design the block diagram to convert from S-R flip flop to J-K

Q5. What are the applications of Flip Flops?

Q6. Differentiate between Synchronous and A synchronous counters.

Q7. How many address lines are required to construct a 1024X8 bytes of RAM?

78

Bachelor of Computer Applications (BCA)

COMPUTER SYSTEM ARCHITECTURE

UNIT IV: BASIC COMPUTER ORGANIZATION AND DESIGN

STRUCTURE

4.0 Objectives

4.1 Computer Architectureand Structure
4.2 Computer Registers

4.3 Common Bus Systems

4.4 Arithmetic Micro-operations

4.5 L ogic Micro-operations

4.6 Shift Micro-operations

4.7 Design of Arithmetic and L ogic Unit

4.8 Summary

79

4.0 OBJECTIVES

» To study about the basics of Computer Architecture and Structure.

» To understand the concepts of Registers and their values based on Memory Unit.

» To know about the Common bus system for transferring data between memory and other
registers.

» To describe arithmetic micro-operations through Arithmetic Circuit

» To study about the use of logical and shift micro-operations using examples.

» Todesignthe ALU using various arithmetic, logical and shift micro-operations.

4.1 COMPUTER ARCHITECTURE AND STRUCTURE

Computer Architecture: Computer architecture is a set of rules and methods dealing how
software and hardware technology standards interact to form a computer system. The
architecture of asystem is separately specified components in terms to its structure.

There are different types of computer architectures:

» Von-Neumann Architecture: Von-Neumann also known as Princeton architecture, is
based on stored program computer concept, where we have single memory for
read/write operations for instructions and data.

» Harvard Architecture: In the Harvard Architecture, the memory is split into two parts
— one for data and another for programs. Data and instructions can be accessed from
different memory locations.

» Instruction Set Architecture: An Instruction Set Architecture (ISA) is an abstract
model of a computer. It describes the design of a computer in terms of the basic
operations it must support. An ISA may be classified in a number of different ways. A
common classification is by architectura complexity — Complex Instruction Set
Computer (CISC) and Reduced Instruction Set Computer (RISC).

Memory [Program | | Data
Data +« Code

Instruction Varable
addrons bddraess

Vo
Devices

Von Neumarnn Machine Harvard Machine

Figure 1: Von-Neumann and Harvard Architecture

80

Computer Organization: Computer Organization is concerned with how the various
components of computer hardware operate and they are interconnected to implement the
architectural specification.

In Computer Organization, there are different types of mechanisms:

» General register organization
» Stack organization
» Single accumulator organization

Susiem Unit

Contral Linit

J T

nput | | | | Cutput
i Mermmary Linit Unft
Arithmeatic
ioglo unit

J

Starage Parl and
Unit

Figure 2: Basic Organization of Computer System

4.1.1 Difference between computer architecture and computer organization
Following are some of the important differences between Computer Architecture and Computer

Organization:

81

Table 1: Difference between Computer Architectureand Organization

Sr. | Computer Architecture Computer Organization

No.

1 It is concerned with the way hardware It is concerned with structure and behavior
components are connected and what the of computer system and how it doesiit.
computer does.

2 It helps us to understand the functional It deals with the structural relationship of
behavior of computer system. computer system.

3 All the high-level designissue are handled | All the low-level design issue are handled
by the computer architecture. by the computer organization.

4 Computer Architecture is designed first. Computer Organization is started after

finalizing the computer architecture.

5 Architecture involves Logic (Instruction | Organization involves Physical
Sets, Addressing modes, Data types, Cache | components (Circuit design, Adders,
optimization. Signals, and Peripherals).

4.2 COMPUTER REGISTERS

Computer Instructions are stored in the memory and memory is set of registers. Registers are
used for temporary storage whereas memory is used for permanent storage. Registers are of
various types like Data Register, Address Register, Accumulator, Instruction Register, Program
Counter, Temporary Register, Input Register and output Register. For example the memory unit
has size 4096X 16, means 4096 words and each word size is of 16 bit. 12 bits are used to specify
4096 words whereas 16 bits are used to specify data bits. So, the address bus for this example
will be of 12 bit and data bus will be of 16 bit. Address bus is aways unidirectional and Data
Bus is always bi-directional. For the above example, various registers have been defined in the
table below:

Data Register (DR) holds the operand of the memory and it is of 16 bit because data busis of 16
bit. Similarly, Temporary Register (TR) isaso of 16 bitsasit is aso used to operate on the data.
Accumulator (AC) is used as processor register and it is used to perform all Arithmetic and
logical operations and result will further be stored into AC. AC also operates on data and size of
AC isof 16 hits. Instruction Register (IR) is used to store the instruction which is being fetched
and executed and it is also of 16 bits due to data bus size. Address Register (AR) is used to hold
the address, so its size depends on the address bus. Program Counter (PC) is a location counter
used to fetch the address of next instruction from the memory, when the address is fetched, its
value is being incremented by 1. The size of PC is of 12 bits. INPR an OUTR are sued to read
and write the data from input-output devices. As ASCII character set is used to read and write,
So, INPR and OUTR are of 8 bits.

82

Table 2: Description and Size of each Register

DR 16 Data Register Holds memory operand

AR 12 Address Register Holds address for memary
AC 16 Accumulator Processor register

IR 16 Instruclion Register Holds instruction cods

PC 12 Propram Counter Holds address of mstructicn
™ 16 Temporary Regisier Holds temporary data

INPR 8 P Register Holds input character

OUTR B Cutput Register Holds output charactar

4.3 COMMON BUSSYSTEM

The basic computer has a memory unit of size 4096x16 (example), 8 registers, and a control unit.
Wires or buses must be offered to transfer information from one register to another and between
memory and registers. The number of wires required will be more, if different connections are
made between the output of each register and the inputs of another registers. So, the best way is
to use more efficient scheme for transferring information using common bus system which is
shown below in the Figure 3. The outputs of each registers and memory are connected via the
common bus system. The specific output that has been selected for each bus lines a any given
timeis calculated from the binary value of three selection variables S2, S1, SO. For example, DR
is011 and decimal value is 3 and for selecting memory it is 111 or decimal equivalent 7. The 16-
bit outputs of DR are placed on the common bus lines when S2 S1 SO = 0 1 1. The particular
register whose LD (load) input is enabled act as a destination register and can receive the data
from the data bus during the next clock pulse transition. When the contents of AR (12 bits) or
PC (12 hits) are applied to the 16-bit common bus, the four most significant bits are set to O's.
When AR or PC receives information from the data bus, only the 12 least significant bits are
transferred into the register. The input register INPR and the output register OUTR have 8 bits
each and communicate with the eight least significant bitsin the bus.

INPR is connected to provide the information to the bus but OUTR can only take information
from the common bus. As INPR receives character from an input device and further it is being
transferred to AC whereas OUTR receives a character from AC and provides the output it to an
output device [2]. There is no data transfer from OUTR to any of seven registers. The bus lines
are connected to the inputs of six registers and the memory. Five registers have three control
inputs: LD (load), INR (increment), and CLR (clear)

83

i $ =5w
| m + 7
KT

T T Address
Wirite Read
1
LD INR CLE
| = 1 2
LD INR CLR
| DE } 3
| | IE |
LD INR CLR
E |
L] L] 1
LD INR CLR
ol = L
1 4 &
o —
1 IE t '! &
I:D II‘IH CILFI:
J@ —_——
L
— 1 —

Figure 3: Common Bus System [1]

44 ARITHMETIC MICRO OPERATIONS

Arithmetic micro-operations dealt with arithmetic operations like addition, subtraction,
increment, decrement, add with carry, subtract with borrow etc. For example as shown in the
Table 3 below, there are eight arithmetic micro-operations, so three selection (S1, SO, Cin) lines
are required. For example, at first input O, O, O addition microopration is performed, similarly,
other micro-operations will be performed on other inputs.

Table 3: Arithmetic Micro-operations List

51 % Cin Y Dutpuil Microoperation

LR I B D=A+8 Add

] o 1 B D=a+E+1 fidd with carmy

L i 0 B C=a+E Bubtract with berrow
0 1 1 B D=f+B+1 Subiract

1 0 0] 0=a Transfer A

1 | 0 O=a+ Increment &

1 1 @ 1 D=a-9 Decramant A

i 1 1 1 D=8 Transfer &

Arithmetic circuit for 4 bit micro-operations is being shown below in the Figure 4. Firstly, 4
MUX and 4 Full Adders are required to perform 4 bit operations. For the first input, S1, SO, Cin
(O, 0, 0), first input A is given as it is to Full Adder (FA) and second input B is multiplexed
through 4X1 MUX. As B is required as an input for A+B micro-operations, so, B is multiplexed

84

a 0, 0. For Selection lines (0,0), but at Cin=1, A+B+1 (Add with carry) operation will be
performed. For next selection line (0, 1), B’ is required , so the output will be A+B’. If Cinis 1
with (0, 1) selection lines, A+B’+1 will be performed. If the selection lineis (1, 0), then only A
output is required, so 0 is multiplexed and if Cin=1, then A+1 will be the output. For selection
line (1, 1) with Cin=0, the output decrement is required, so 1 is multiplexed on each MUX to do
the operation like A+1111=A-1. But if the Cin=1 then again A-1+1=A will be performed.

8

AD

BO

A1

B1

A2

B2

A3

B3

X0 Cco
=k S s
Ax1 Y0 C1
—5 z MUX
x1 c1
=E o
4x1 yi___C2
—]> z MUX
X2 c2
=t [
1 Y2 C3
= g i}
x3 C3
= o
4x1 Y3 C4
—> g MUX
I |— Cout
0 1

Figure4: Design of Arithmetic Circuit [1]

45LOGIC MICRO OPERATIONS

Logic micro-operations are used to perform binary operations on string of nits using logical
gates, these operations consider each bit of the registers separately and treat them as binary
variables. There are four basic logical operations as shown below in the Table. To design the
circuit of 4 logical gates, two selection lines are required, like for S1, SO (0,0), AND operation is
performed, for (0,1), OR operation is performed, for (1,0), XOR opeartion is performed and at
(1,2) Compliment operation is perfomred that revrese theinput 1to O and O to 1.

Table 4. List pf Logic Micro-operations

S, S Output p-operation
0 0 |[F=AAB AND

0 1 |F=AvB OR

1 0 |F=A®B XOR

1 1 |F=A Complement

85

Aj
0
Bj _)_
D_ T oaxd
= mux [~ FI
[
D" 3 Select
81 I
Sp

Figure5: Design of L ogic Unit

4.6 SHIFT MICRO OPERATIONS

Shift micro-operations are the micro-operations that are used to transfer serial information. These
are also used along with arithmetic micro-operations, logica micro-operation, and other data-
processing operations.

There are three types of shifts micro-operations:

> Logicd:
» Circular
» Arithmetic

Logical Microperations transfers the 0 zero through the serial input when it is used for shl logical
shift-left as shown in Figure 6 and shr for shift-right describes in Figure 7. For example,
10110011, during shl operation, the output will be: 01100110, as 0 is placed in the missing digit
of MSB. For logical shift right, the output will be: 01011001.

0
AN

L J
L
L

v

Figure6: Logical- SHL operation

Figure7: Logical- SHR operation

86

Circular Shift Left and Right Operations. During CIL (Circular shift left) shown in Figure 9
and CIR(Circular Shift Right) shown in Figure 8, MSB becomes LSB and LSB becomes MSB.
For the above example, the output for CIL is: 01100111, for CIR: 11011001

¥
¥
v

h
¥
¥
h 4
¥
r

Figure8: CIR operation

F 3

I Y
F
F 3
F Y
F Y
F 3

-

Arithmetic Shift Left and Right Micro-operations: ASR (Arithmetic Shift Right) is shown in
Figure 10 that sign bit remains the same and moved to the next bit also. Arithmetic micro-
operations are used for signed numbers. For example: 10110011, the output will be for ASR:
11011001, similarly, for ASL shown in Figure 11, the output is same as LSL (logical shift left),
only the change of sign bit during ASL operation.

Figure 9: CIL operation

.| sign | -~ o o o - .
7| bit " i " " i " " _\
Figure 10: ASR operation
0
/ sign|, - - - o - " < ey
bit [h B M h b B

Figure 11: ASL operation

The sign bit is checked by using EX-OR operation between last two bits, if last two bits are same
the sign will be positive otherwise, sign will be negative. If the sign is different there will be
overflow and V=1, if the sign is same, then no overflow and V=0 as shown in the Figure 12
below.

87

—] ‘Ii_:':lllni- L] El a4 o o |‘ L= ""f
—1 Before the shift, if the leftmost two
)) D—|V| bits differ, the shift will result in an
- = —e
overflow

Figure 12: Overflow Flag during ASL operation

4.7 DESIGN OF ALU
ALU is used to perform al types of micro-operations like arithmetic, logical and shift. For
designing 4-bit ALU, the operations shown in the Table 5 are being implemented by designing
ALU. 8 micro-operations are same as arithmetic circuit and 4 are logical micro-operations and 2
are shift left and shift right.

Table 5: ALU micro-operations

53 82 851 S0 Cin Operation Function

0 0 0 0 0 F=A+B Addition

0 0 0 0 1 F=A+B+1 Add with carry

0 0o 0 1 0 F=A+PB Subtract with borrow
0 0 0 1 1 F=A+B +1 | Subtraction

0 0 1 0 0 F=A Transfer A

0 0 1 0 1 F=A+1 Increment A

0 0 1 1 0 F=A-1 Decrement A

0 0 1 1 1 F=A TransferA

0 1 0 0 X F=A,B AND

0 1 0 1 X F=AvB OR

0 1 1 0 X F=A&B XOR

0 1 1 1 X F=A Complement A

1 0 X X X F=shrA Shift right A into F
1 1 X X X F=shlA Shift left A into F

For performing all the operations shown in the table [3], the design of ALU is presented in the
Figure 13 below. 4X1 MUX is required to select any one from four micro-operations like
arithmetic, logical, shift right and shift left. If S2, S3 (0, 0) then Arithmetic Circuit will be
selected, if itis(0,1), Logic Circuit will be implemented, for (1,0), shift right operation, for (0,1),
shift left operation will be implemented. Arithmetic Circuit have one Carry input which is passed
to the other Full Adders aready explained in the Figure 4: Logic Circuit also implemented
same as shown abovein the Figure5.

88

S3
S0 }
Arithmetic|Pi
Circuit
Select
]
Ci+1 2 dX Fi
MUX
N 3
Logic |Ei
Bi Circuit
! shr
A shl
i+1
Figure 13: Design of ALU
4.8 SUMMARY

> Basics of Computer Architecture have been discussed, Difference between Computer

Structure and Architecture is also discussed.
> Registers are used for temporary storage and Memory is used for permanent storage, Size

of registers depends on the Memory Size.
» Typesof Registerslike PC, AR, DR, TR, IR, INPR and OUTR have also been described
» Common Bus system is used to transfer the data between various registers and Memory

and registers.
» Arithmetic micro-operations like addition, subtraction, increment, decrement, add with

carry, subtract with borrow has also been discussed.
» Logic micro-operations are like AND, OR, NOT, EX-OR has been discussed and

designed through 4X1 Mux.
» Shift micro-operations are of three types like logical, arithmetic and circular, it has aso

been discussed using numerical example.
» ALU isdesigned by using arithmetic, logical and shift micro-operations.

Some Objective Type Questions

Q1. The memory size is 4K*16, how many bits there will be in Program Counter,
Accumulator.

PC

AC

89

a 12,15
b) 12,16
c) 16,12
d) None of these

Q2: Binary addition of (3) and (-7), produces Carry flag=
Flag

Q3: R= 10001010, determine the value of R after performing arithmetic shift right
operation.

Q4. Write the output of 8 bit no. 1001001 after performing CIL and CIR.

Q5. A Computer has a memory of size 2Kx32. The instruction has four parts indirect bit,
opcode, register part specify 32 registers and address part. How many bits there are in address
field , opcode register part ,modefield

, Sign

a 12,11,5,32
b. 11,15,51

c. 32,5/16,11
d. None of these

Questionsfor Practice
Q1. Design 4 bit Decrementer using 4 Full Adders.

Q2. Design the truth table for the following diagram and Write the value of S and Cin (in binary
only) for the following Arithmetic Circuit:

FA | D,

90

Q3. Design the logic circuit by taking 16 micro-operations
Q4. Design 4 bit Shifter circuit for performing Logical Shift ILeft and Right operations.

Q5: Design an adder/subtractor circuit with carry input Ci, and two inputs A and B. When
Cin=0, the circuit performs A + B. When Ci,=1, the circuit performs A — B, Verify the circuit
using A=5 and B=2.

References:

1. M. Morris Mano, Computer system architecture (3. Ed.). Pearson Education 1993, ISBN 978-
0-13-175563-5, pp. I-XI11, 1-524.

2. M. Morris Mano: Pracniques; simulation of Boolean functionsin a decimal computer.
Commun. ACM 8(1): 39-40 (1965)

3. Https: file:///C:/Users/Dr.%20M ukesh%20K umar/Downloads/4_bit ALU.pdf

91

Bachelor of Computer Applications (BCA)

COMPUTER SYSTEM ARCHITECTURE

UNIT V: TIME AND CONTROL UNIT

STRUCTURE

5.0 Objective

5.1 Introduction

5.2 Instruction cycle

5.3 Memory referenceinstructions
5.4 Register referenceinstructions

5.5 Input-output instructions

5.6 Design of Timing and Control Unit

5.7 Summary

92

5.0 0BJECTIVE
e Tounderstand the Instruction cycle
e To Know Memory reference instructions, Register reference instructions and Input-
output instructions,
e Tounderstand the Design of Timing and Control Unit

5.1 INTRODUCTION

Computer instructions are a set of machine language instructions that a particular processor
understands and executes. A computer performs tasks on the basis of the instruction
provided.

Timing
The events on a bus are coordinated with the help of timing signals provided by a clock.
These timing signals are managed by the control unit.

.Clock

The ‘clock’ provides timing signals to control components and operations of the CPU. The
clock defines regular time intervals, caled cycles. To perform any basic operation, the CPU
divides the action into sequence of basic steps. Each basic step is completed in one clock
cycle. The classification of buses can be done based on the clock, which is of two categories:
Synchronous bus and Asynchronous bus.

Figure 5.1 shows the timing diagrams for synchronous read operation. The ‘clock’ is the
system clock. This clock is used to synchronize the operations of the system. The CPU places
the address on the address bus at the beginning of the clock cycle. During this time, the
address is decoded and data is accessed from the memory. The memory places the data on the
data bus. The Read operation is activated during this time and the processor reads the data
from the data bus, and stores it in one of the registers.

aos | I

Addresshus ------ Address -

Data bus Data (a)

Rexacl

Figure 5.1 timing diagrams for synchronous read operation

An instruction comprises of groups called fields. These fields include:

e The Operation code (Opcode) field which specifies the operation to be performed.

e The Address field which contains the location of the operand, i.e., register or
memory location.

e The Mode field which specifies how the operand will be located.

93

The Timing and Control Unit unit of the microprocessor issues necessary timing and control
signals for the execution of instructions. It generates three types of signals namely status,
control and timing signals required for the operation of memory and 1/O devices. It has three
control signals. It controls all external and internal circuits. It operates with reference to clock
signal. It synchronizes al the data transfers.

Timing signal in computer is generated by electrical pulses that are generated in the processor
or in external devices in order to synchronize computer operations. The main timing signal
comes from the computer's clock, which provides a frequency that can be divided into many
slower cycles. Other timing signals may come from a timesharing or real -time clock.

The control unit of the central processing unit regulates and integrates the operations of the
computer. It selects and retrieves instructions from the main memory in proper sequence and
interprets them so as to activate the other functional elements of the system at the appropriate
moment...

5.2INSTRUCTION CYCLE

A program residing in the memory unit of the computer consists of a sequence of
instructions. The program is executed in the computer by going through a cycle for each
instruction. Each instruction cycle in turn is subdivided into a sequence of subcycles or
phases The instruction cycle (aso known as the fetch-decode-execute cycle, or simply the
fetch-execute cycle) is the cycle that the central processing unit (CPU) follows from boot-up
until the computer has shut down in order to process instructions.

The processing involved in the execution of a single instruction is termed as Instruction
Cycle.

The organization of the CPU is based on the functions it performs which are to fetch an
instruction, decode it and execute it. They are explained as follows:

1. Fetch Instruction: CPU reads instructions from memory

2. Change Program Counter (PC)

3. Interpret instruction: Determine the type of instruction fetched.

4. Decode I nstruction: Instruction is decoded to determine what action is required.
5. Fetch data: If the instruction uses data, fetch it from memory or I/O devices

6. Execute instruction: The execution of the instruction may require arithmetic or logical
operations on data

7. Writedata: Theresults are stored in the memory location.

To do these operations, CPU needs to store some data temporarily in the CPU registers

94

Fetch Execute
ET instruction instruction

Fetchcycle Execute cycle

Basiclnstructioncycle

In the beginning of each instruction cycle, the processor fetches the instruction from the
memory. The processor contains a special register called a Program Counter (PC), which
holds the address of next instruction to be executed. The address of this instruction is in the
Program Counter (PC) which holds the address of the next instruction to be fetched. Now,
initially the address of the very first instruction ('i' here) must be entered into PC. After the
instruction is fetched, the PC is incremented. The fetched instruction is loaded in the
instruction register (IR). Thisinstruction is interpreted by the decoder and the required action
is performed. Another specia register is Accumulator (AC), which is directly connected to
the ALU and holds one of the operands for the operation to be performed

Now, instruction is fetched from the address, decoded and finally executed by the processor.
Similarly, other instructions are also executed one by one.

To illustrate how an instruction is executed, consider the addition of data stored in 16-bit
memory locations with addresses 100 and 101. The instruction is 16 bits. 4 bits for the
opcode, 12 bits for the operand. The program adds the contents of the memory word at
address 830 to the contents of the memory word stored at address 831. The results are stored
at address 831. The implementation requires three fetch and three execute cycles, as
described below:

1. PC contains address 100, which is the address of the first instruction. The
instruction isloaded in the IR.
2. Thefirst 4 bits of the IR are for the opcode which indicates that AC is to be
loaded. The remaining 12 bits hold the address, 830 in this case.
3. ThePCisincremented.
4. The contents of AC (location 830) and the contents of 831 are added. The result
isstoredin AC.
5. PCisincremented and the next instruction is fetched.
6. The contents of AC are stored in location 831.
As can be seen from the above mentioned 6 steps for the addition of two numbers, three
instruction cycles are used. Each of this instruction cycle consists of a ‘fetch’ and ‘execute’
cycle. The instructions used are quite ssmple. More complex instructions may lead to lesser
number of instructions used for the same operation. For example, the execution cycle may
involve more than one reference to the memory. Or in some case, the reference might be to
the I/O instead to the memory. Some exchanges of data/operand may be between processor or
memory or /O devices, or just internal processor operations like between registers and ALU.
These exchanges depend on the read and write operations.

95

5.3MEMORY REFERENCE INSTRUCTIONS
The external memories store the programs and data required by the processors.

Memory Reference refer to memory address as an operand. The other operand is aways
accumulator. It specifies 12-bit address, 3-bit opcode (other than 111) and 1-bit addressing
mode for direct and indirect addressing

In order to specify the microoperations needed for the execution of each instruction, it is
necessary that the function that they are intended to perform be defined precisely. Some
instructions have an ambiguous description. This is because the explanation of an instruction
explanation.

Following Table lists the seven memory-reference instructions

TABLE Memony-Belerernce Instnctiora

Uperation
Symbol decoder Symbolic description
AND 0, AC=AC A MIAR]
ADD D, AC—AC + M[AR], E«C..
LA i B AC—MAR]
STA o, M[AR] AL
BLIN o, PC+—AR
B3A iy MlAR]+=PC, PC=AR+1
I57 o, MJAR] = M[AR] + 1,

IEMAR] + 1 =0 then PCw=PC + 1

AND to AC

This is an instruction that perform the AND logic operation on pairs of bitsin AC and the
memory word specified by the effective address. The result of the operation is transferred to
AC.

The microoperations that execute this instruction are:

AC<-ACANADR,SC<---0

ADDtoAC

This instruction adds the content of the memory word specified by the effective address to
the value of AC. The sum is transferred into AC and the output carry Co IS transferred to
the E (extended accumulator) flip-flop. The microoperations needed to execute this
instruction are
DR« M[AR]

AC— AC+DR, E«~ Cyy,SC 0

LDA: Load to AC

96

This instruction transfers the memory word specified by the effective address to AC. The
microoperations needed to execute thisinstruction are

DR«—M [AR]
AC—DR s 0
STA: Store AC

This instruction stores the content of AC into the memory word specified by the effective
address. Since the output of AC is applied to the bus and the data input of memory is
connected to the bus, we can execute this instruction with one microoperation:

M [AR] — AC, SC « 0
BUN: Branch Unconditionally

This instruction transfers the program to the instruction specified by the effective address.
that PC holds the address of the instruction to be read from memory in the next instruction
cycle. PCisincremented at time T1 to prepare it for the address of the next instruction in the
program sequence. The BUN instruction allows the programmer to specify an instruction out
of sequence and we say that the program branches (or jumps) unconditionally. The
instruction is executed with one microoperation:

PC — AR,SC <0
The effective address from AR is transferred through the common busto PC .

BSA: Branch and Save Return Address

This instruction is useful for branching to a portion of the program called a subroutine or
procedure. When executed, the BSA instruction stores the address of the next instruction in
sequence (which is available in PC) into a memory location specified by the effective
address. The effective address plus one is then transferred to PC to serve as the address of
the first instruction in the subroutine. This operation was specified in the following register
transfer:

M[AR] <-- PC, PC <-- AR+

ISZ: Increment and Skip if Zero

This instruction increments the word specified by the effective address, and if the
incremented value is equal to 0, PC is incremented by 1. The programmer usually stores a
negative number (in 2's complement) in the memory word. As this negative number is
repeatedly incremented by one, it eventually reaches the value of zero. At that time PC is
incremented by onein order to skip the next instruction in the program.

Since it is not possible to increment a word inside the memory, it is necessary to read the
word into DR, increment DR, and store the word back into memory. This is done with the
following sequence of microoperations.

DR < M [AR]
DR < DR + 1

97

M [AR] <~ DR,
if (DR = 0) then (PC « PC + 1), SC « 0

; Obtain instruction from
Instruction program storage
Fetch
Instrf;cﬂon Determine required actions and instruction size
Decl:ode
Operand Locate and obtain operand data
Fetch
!
Compute result value or status
Result i .
Store Deposit results in storage for later use
|
Next Determine successor instruction; can
o Instruction generally be combined w/ Decode

Control Flowchart

A flowchart showing all microoperations for the execution of the seven memory-reference
instructions is shown in Fig. 5-11. The control functions are indicated on top of each box.

FLOWCHART FOR MEMORY REFERENCE INSTRUCTIONS

Memory-refarsnce instruction

S,
Ton T
[oa.-umll] [ou.—uml I [nl.—uml |"W'10-‘C I
Dal's DTy Balg

e
0 [+ Cowt

SC -0

.I“ DTy o 74 r STa
. L]

PC AR N(AK] e FC
SC 40 AR e AR &1

[04Ty 5's

PCe-AR CHeDHe
SCe0
0.1

MAR] « DR
-l

than |PCe= PC« 1)
Ce0

98

5.4 REGISTER REFERENCE INSTRUCTIONS
Register Reference instructions perform operations on registersrather than memory
addresses. The IR(14 — 12) is 111 (differentiates it from memory reference) and IR(15) is 0

(differentiates it from input/output instructions). The rest 12 bits specify register operation
TABLE Executian of RegarerRefmenee Initrustion

DTy = r [common $0 all register-reference instreciions)
FRiip = By [ts1 in FR(0=11) thas specifies the operation]

ri SCe=(Clear SC
CLA ol AC—0 Clear AC
CLE rByg E«0 Chear E
CMA iy AC— AT Complement AL
CME rB; E«F Complement E

CIR 1By ACs=ghr AC, AC(15) = £, Es= AC[0) Circulate right
CIL rBe ACe—shl AC, AC(D)+—E, E+— AC[15) Circulate befi

INC B AC—AC +] Increment AL
SPA rBg W (AC(S) = 0) then (PC—PC + 1) Skeip of positive
SMA rE: I (AC(15) = 1) then (AT «—PC + 1] Skip if pegative
3ZA rB; I [AC = 0) then PC—PC + 1) Skip i AC zero
SEE rB: I (E = 0 then (PC—PC =+ 1) Skip if E zero
HLT rBy S§5+0(5 aslari—sop Qip-Oop) I compuier

The first seven register-reference instructions perform clear, complement, circular shift, and
increment microoperations on the AC or E registers. The next four instructions cause a skip
of the next instruction in sequence when a stated condition is satisfied. The skipping of the
instruction is achieved by incrementing PC once again (in addition, it is being incremented
during the fetch phase at time T1). The condition control statements must be recognized as
part of the control conditions. The AC is positive when the sign bit in AC(IS) = 0; it is
negative when AC(IS) = I. The content of AC is zero (AC = 0) if al the flip-flops of the
register are zero. The HLT instruction clears a start-stop flip-flop S and stops the sequence
counter from counting. To restore the operation of the computer, the start-stop flip-flop must
be set manually.

55 INPUT-OUTPUT INSTRUCTION

Input/Output Instructions are for communication between computer and outside environment.
The IR(14 — 12) is 111 (differentiates it from memory reference) and IR(15) is 1
(differentiates it from register reference instructions). The rest 12 bits specify 1/0

An instruction which is used to print something on the screen or any other output deviceis
known as output instruction. Similarly, an instruction which is used to input information from
the user is known as input instruction

The 1/O devices are given specific addresses. The processor similarly views the /O
operations as memory operations. It concerns commands that include the address for the
device.

The I/O instructions are needed for the following objectives —

e Itisusedto analyzing flag bits.
e It cantransfer datato or from the AC register.
e Itisusedfor controlling interrupts.

99

The 1/O instructions carry the opcode as 1111. They are recognized through the control when
D; =1 and I=1. The operation to be executed is determined by the different remaining bits.

There are various /O Instructions which are shown in the table —

There are various |/O Instructions which are shown in the table

Symbol | Description

INP The INP instruction address the information from the INPR to AC which has 8 low
order bits. It also clearstheinput flagto O

ouT It can send the 8 low order bits from AC into output register OUTPR. It also clears
the output flag to 0.

SKI These are the status flags. They skip the next instructions when flag = 1, They are
primarily branching instructions.

SKO Itissimilar to SKI.

ION Enables (set) interrupt.

|OF Disables (clear) interrupt.

5.6 DESIGN OF TIMING AND CONTROL UNIT

The timing for al registers in the basic computer is controlled by a master clock generator.
The control signals are generated in the control unit and provide control inputs for the
multiplexers in the common bus, control inputs in processor registers, and microoperations
for the accumulator

The clock pulses are applied to al flip-flops and registers in the system, including the flip-
flops and registers in the control unit. The clock pulses do not change the state of a register
unless the register is enabled by a control signal. The control signals are generated in the
control unit and provide control inputs for the multiplexers in the common bus, control inputs
in processor registers, and microoperations for the accumulator.

There are two major types of control organization:
1. Hardwired control
2. Microprogrammed control

3. Hardwired controlzzz

The Hardwired Control organization involves the control logic to be implemented with gates,
flip-flops, decoders, and other digital circuits.

100

> A Hard-wired Control consists of two decoders, a sequence counter, and a number of

logic gates.

An instruction fetched from the memory unit is placed in the instruction register (IR).

The component of an instruction register includes; | bit, the operation code, and bits 0

through 11.

vV V V VYV V

The operation code in bits 12 through 14 are coded with a 3 x 8 decoder.

The outputs of the decoder are designated by the symbols DO through D7.

The operation code at bit 15 is transferred to a flip-flop designated by the symbol 1.
The operation codes from Bits 0 through 11 are applied to the control logic gates.
The Sequence counter (SC) can count in binary from O through 15.

The following figure shows the block diagram of a Hardwired Control organization.

Conlred Unit of a Basic Compitern

Instruction regiaber (18]

.‘Iﬂ I 4 13 12 ‘ 11 -0 S WS

2

. Coninad Logic

PR L]

10 Sequeee g [T =0T
Gk
e

——— Otk

Micro-programmed Control

gl T

Gommad

CIAELNS

The Microprogrammed Control organization is implemented by using the programming
approach. In Microprogrammed Control, the micro-operations are performed by executing a

program consisting of micro-instructions.

The following image shows the block diagram of a Microprogrammed Control organization.

101

Wiz remregrasnmed Contral Unit of 3 Basie Somputer:

i hll ¥ s - ogdrosk can
r||'.| T
AT g Contol adcess Larerod menory e Gorimidata

O o RNy]

et « address imoreation \

> The Control memory address register specifies the address of the micro-instruction.

The Control memory is assumed to be a ROM, within which all control information is
permanently stored.

The control register holds the microinstruction fetched from the memory.

The micro-instruction contains a control word that specifies one or more micro-
operations for the data processor.

> While the micro-operations are being executed, the next address is computed in the
next address generator circuit and then transferred into the control address register to
read the next microinstruction.

> The next address generator is often referred to as a micro-program sequencer, as it
determines the address sequence that is read from control memory.

5.7 S UMMARY

Timing signal in computer architecture are Electrical pulses generated in the processor or in
external devices in order to synchronize computer operations. The main timing signal comes
from the computer’s clock, which provides a frequency that can be divided into many slower
cycles. Other timing signals may come from atimesharing or real-time clock.

The function of timing and control unit is to provide timing and control signa to the
microprocessor to perform the various operation. It has three control signals. It controls all
external and internal circuits. It operates with reference to clock signal. It synchronizes all the
datatransfers.

This unit of the microprocessor issues necessary timing and control signals for the execution
of instructions. It generates three types of signals namely status, control and timing signals
required for the operation of memory and 1/0 devices.

A control unit works by receiving input information that it converts into control signals,
which are then sent to the central processor. The computer's processor then tells the attached
hardware what operationsto carry out.

CPU time (or process time) is the amount of time for which a central processing unit (CPU)
was used for processing instructions of a computer program or operating system, as opposed

102

to elapsed time, which includes for example, waiting for input/output (I/0O) operations or
entering low-power (idle) mode.

The difference between main memory and control memory is that the main objective of the
Control unit is used in the central processing unit to controlling the operation whereas the
Memory unit in the central processing unit is used for storing the information in the computer
system. The control unit does not holds the final result whereas memory unit do this task.

Questions

What is the function of timing and control unit?

What are timing and control signals?

What istiming in CPU?

What is the purpose of control unit in acomputer?

What is the difference between main memory and control memory?

o~ wdPE

103

https://www.mvorganizing.org/what-is-the-function-of-timing-and-control-unit/#What_is_the_function_of_timing_and_control_unit
https://www.mvorganizing.org/what-is-the-function-of-timing-and-control-unit/#What_are_timing_and_control_signals
https://www.mvorganizing.org/what-is-the-function-of-timing-and-control-unit/#What_is_timing_in_CPU
https://www.mvorganizing.org/what-is-the-function-of-timing-and-control-unit/#What_is_the_purpose_of_control_unit_in_a_computer
https://www.mvorganizing.org/what-is-the-function-of-timing-and-control-unit/#What_is_the_difference_between_main_memory_and_control_memory

Bachelor of Computer Applications (BCA)
COMPUTER SYSTEM ARCHITECTURE

UNIT VI: DESIGN OF CENTRAL PROCESSING UNIT

STRUCTURE

6.0 Objectives

6.1 Register Organization

6.2 Stack Organization

6.3 Instruction Organization
6.3.1 Three addressinstructions
6.3.2 Two addressinstructions
6.3.3 Oneaddressinstructions
6.4 Instruction formats

6.5 Addressing Modes

6.6 Summary

103

6.0 OBJECTIVES
e Understanding Register organization
e Understanding stack organization,
e Understanding Register instructions and addressing modes.

6.1 REGISTER ORGANIZATION

Registers are the smaller and the fastest accessible memory units in the central processing
unit (CPU). According to memory hierarchy, the registers in the processor, function a level
above the main memory and cache memory. The registers used by the central unit are also
called as processor registers.

A register can hold the instruction, address location, or operands. Sometimes, the instruction
has register as a part of itself.

Register organization is the arrangement of the registers in the processor. The processor
designers decide the organization of the registers in a processor. Different processors may
have different register organization. Depending on the roles played by the registers they can
be categorized into two types, user-visible register and control and status register. In a
register organized computer, the CPU has the logic needed to execute its particular
instruction set and is divided into data paths and control unit. Instructions are read, operations
are performed, and the results are stored in general-purpose registers (GPR). The general-
purpose register file is a set of registers of that particular CPU. Each register has a name, or
an ID, or number (used synonymously). The register file allows an instruction to access the
registersin any order by specifying the register number of the register to be accessed. Thisis
similar to specifying the address of the memory location in the memory system in any order.
Reading the contents of a general-purpose register does not change their contents.

Within the CPU, there are a set of registers that serve two functions:

User-visible Registers. These registers store the data from the main memory that will be
used during execution. Thus, they minimize the main memory references.

Control and Status Registers. These are used by the control unit to control the operation of
the CPU, and by operating system programs to control the execution of the program.

User-Visible Registers

User-visible registers are referenced by means of machine language that the CPU executes.
They are categorized as under:

e Genera Purpose registers
e Dataregister

e Addressregister

e FHagregisters

e User Visible Registers

104

https://binaryterms.com/register-organization.html#UserVisibleRegisters

0 General Purpose Register
o DataRegister
0 Address Register
o Condition Codes
e Control and Status Registers
0 Program Counter
0 Instruction Register
0 Memory Address Register
0 Memory Buffer Register
General Purposeregisters

The general-purpose register file (GPR) alows an instruction to access the registers in any
order. Each register has a name (or number), and the data stored in that register.

These registers can be assigned a variety of functions. Any GPR can contain the operand for
any opcode Some GPRs are used for addressing functions. Some of these registers are
dedicated registers for floating point and stack operation. Some specia registers are Index
register, Stack Pointer, and Segment Pointer.

Data Registers
Data registers may be used only to hold data and cannot be used for calculations.
Address Registers

Address registers hold the address of the instruction. They may act as genera -purpose
register when they are used for a particular addressing mode.

Flag registers
Flag registers are a special category of registers which are partialy visible to the users.

They hold the condition codes, which are aso referred to as flag registers. The Condition
codes are the hits set by the CPU hardware as a result of operations. For example, an
arithmetic operation may produce a positive, negative, zero, or an overflow result. The result
of the operation is stored in the flag register, and the condition of the result, which can be of
the form of a code, isalso set

Control and Statusregisters

The control and status registers are employed to control the operation of the CPU. Most of
the registers are not visible to the user. These registers may have names that are specific to
the organization of the CPU. The following four registers are essential for execution of an
instruction:

105

https://binaryterms.com/register-organization.html#GeneralPurposeRegister
https://binaryterms.com/register-organization.html#DataRegister
https://binaryterms.com/register-organization.html#AddressRegister
https://binaryterms.com/register-organization.html#ConditionCodes
https://binaryterms.com/register-organization.html#ControlandStatusRegisters
https://binaryterms.com/register-organization.html#ProgramCounter
https://binaryterms.com/register-organization.html#InstructionRegister
https://binaryterms.com/register-organization.html#MemoryAddressRegister
https://binaryterms.com/register-organization.html#MemoryBufferRegister

Program Counter (PC): Contains the address of the next instruction to be fetched.
Instruction register (IR): Contains the most recently fetched instruction.
Addressregister (AR): Contains address of alocation in memory.

Dataregister (DR): Contains aword of data that has been most recently read from memory,
or written to memory.

These registers are used for the movement of data between the CPU and main memory. Some
commonly used registers with their commonly used attributes are described in Figure 6.1

Register | Register Register Name Function

Symbol | (SizeBits)

PC 12 Program Counter Holds address of next instruction
TR 16 Temporary Register Holds Temporary data

IR 16 Instruction Register Holds Instruction Code

AC 16 Accumulator Processor Register

AR 16 Memory Address Register | Holds address for memory

DR 12 Data Register Holds Memory Operand

INPR 8 I/P Register Holds I/P Character

OUTR |8 O/P Register Holds O/P character

As pointed out in Figure, the data register (DR) holds the operand read from the memory. The
accumulator register (AC) is agenera purpose processing register. The instruction read from
memory is placed in the instruction register (IR). The temporary register (TR) is used for
holding temporary data during processing. The memory address register (AR) has 12 hits of a
memory address. The program counter (PC) holds the address of the next instruction to be
used from the memory after current instruction is executed. The input register (INPR)
receives an 8-bit character from an input device. The output register (OUTR) holds an 8-bit
character for a output device.

The information of the status of the results in the CPU is provided by a register known as
Program Status Word (PSW). PSW contains condition codes and other status information.
Common fields or flags include the following:

Sign: Holds sign bit of the result of the last arithmetic operation.
Zero: It isset when theresult isO.

Carry: Set if addition result has a carry, or a subtraction needs a borrow.

106

Equal: If logical compare result is equality.

Overflow: Used to indicate arithmetic overflow.

Interrupt enable/disable: Used to enable or disable interrupts.
6.2 STACK ORGANIZATION

A stack is a memory unit with an address register. This register stores the address of top of
stack. Thisis known as Stack Pointer (SP). The stack pointer continually holds the address of
the element that is located at the top of the stack. It can insert an element into or delete an
element from the stack. The insertion operation is known as push operation and the deletion
operation is known as pop operation. In a computer stack, these operations are simulated by
incrementing or decrementing the SP register

Note: Stack based CPU organisation uses zer o addressinstruction.
Register Stack

The stack can be arranged as a set of memory words or registers. Consider a 64-word register
stack arranged as displayed in the figure below. The stack pointer register includes a binary
number, which is the address of the element present at the top of the stack. The three-element
A, B, and C arelocated in the stack.

The element C is at the top of the stack and the stack pointer holds the address of C that is 3.
The top element is popped from the stack through reading memory word at address 3 and
decrementing the stack pointer by 1. Then, B is at the top of the stack and the SP holds the
address of B that is 2. It can insert a new word, the stack is pushed by incrementing the stack
pointer by 1 and inserting aword in that incremented location.

E4-word Stack

I Address |
=
FULL l EMPTY I

4

[s# }— ¢ 3

B 2

A 1

0

——
| DR

The stack pointer includes 6 bits, because 2° = 64, and the SP cannot exceed 63 (111111 in
binary). Thisis because if 63 isincremented by 1, the result is0(111111 + 1 = 1000000). SP
holds only the six least significant bits. If 000000 is decremented by 1 thus the result is
111111,

107

Therefore, when the stack is full, the one-bit register ‘FULL’ is set to 1. If the stack is null,
then the one-bit register ‘EMTY’ is set to 1. The data register DR holds the binary
information which is composed into or readout of the stack.

The push operation is executed as follows —

SP«SP + 1 It can increment stack pointer

K[SP] «— DR It can write element on top of the stack
If (SP = 0) then (FULL « 1) Check if stack isfull

EMTY « 0 Mark the stack not empty

The main two operations that are performed on the operators of the stack are Push and Pop.
These two operations are performed from one end only.

Push -
This operation results in inserting one operand at the top of the stack and it decrease the stack
pointer register.

Pop -
This operation results in deleting one operand from the top of the stack and it increase the
stack pointer register.

PDP-11, Intel’s 8085 and HP 3000 are some of the examples of the stack organized
computers.

6.3 INSTRUCTION ORGANIZATION

A computer performs a task based on the instruction provided. Instruction in computers
comprises groups called fields. These fields contain different information as for computers
everything isin 0 and 1 so each field has different significance based on which a CPU
decides what to perform. The most common fields are:

e Operation field specifies the operation to be performed like addition.

e Address field which contains the location of the operand, i.e., register or
memory location.

« Mode field which specifies how operand is to be founded.

108

Copying data from one place to another is the most fundamental of al operations. Here,
copying means creating an identical bit pattern as the original. There are two reasons that data
may be copied from one location to another. The first is the assignment of values to variables,
such as A = B. The value in memory location B is copied to memory location A. The second
purpose is to make the data available for its efficient use. For this reason, variables are copied
from memory locations to registers.

The operation of adding two numbers is a fundamental capability in any computer. The
statement C = A + B in a high-level language program is a command to the computer to add
the current values of the two variables caled A and B, and to assign the sum to a third
variable C. When the program containing this statement is compiled, the three variables A, B,
and C are assigned to distinct locations in the memory. The contents of these locations
represent the values of the three variables. Hence, the above high-level language statement
requires the following action to take place in the computer.

[Cl—[A] +[B]

To carry out this action, the contents of memory locations A and B are fetched from the
memory and transferred into the processor where their sum is computed. This result is then
sent back to the memory and stored in location C. This operation can be accomplished in
various ways.

6.3.1 Threeaddressinstruction
First assume that this action is to be accomplished by a single machine instruction of three
operands — A, B and C. Thisthree-address instruction can be represented symbolically as:
AddA,B,C
Operands A and B are called the source operands, C is called the destination operand, and
Add is the operation to be performed on the operands. A genera three-address instruction has
the format:
Operation Source 1, Source 2, Destination
A 3-address instruction is too large to fit in one word for a reasonable word length. Thus, a
format that allows multiple words to be used for a single instruction would be needed to
represent an instruction of this type.
6.3.2 Two-addressinstruction
A two-address instruction has only two operands. A two-addr ess instruction has the form
Operation Source, Destination

An Add instruction of thistypeis:

109

Add A,B

The above statement performs the operation [B] <« [A] + [B]. When the sum is calculated,
the result is sent to the memory and stored in location B, replacing the original contents of
this location. This means that operand B is both a source and a destination.

We had defined three- and two-address instructions. However, even two-address
instructions will not normally fit into one word for usual word lengths and address si zes.

6.3.2 One-addressinstruction

One-address instructions specify only one memory operand. When a second operand is
needed, as in the case of an Add instruction, it is understood implicitly to be a unique
location. A processor register, usualy called the accumulator, may be used for this purpose.
Thus, the one-addressinstruction is:

Add A
Which means the following:
Add the contents of memory location A to the contents of the accumulator register and place
the sum back into the accumulator. Other more commonly used one-address instructions are:

Load A
and
Store A

The Load instruction copies the contents of memory location A into the accumulator and the
Store instruction copies the contents of the accumulator into memory location A. Using only
one-address instructions, the operation [C] «— [A] + [B] can be performed by executing the
seguence of instructions:

Load A
Add B
Store C

Note that the operand specified in the instruction may be a source or a destination, depending
on the instruction. In the Load instruction, address A specifies the source operand and the
destination operand is accumulator, which is implied. Address C specifies the destination
location in the STORE instruction and here the accumulator is the implied source.

110

6.4 Instruction Formats

Basic Formats

The information within the computer is of two types. instruction, or data. Data is further
subdivided into numerical and non-numerical form. Numerical data is further of two types:
fixed point, and floating point.

Fixed Point Numbers

Integers are fixed point numbers which have an implied binary point at the right hand side.
The binary fixed point number can be represented as.

babbbc PP bk

where each by iseither 0 or 1 and binary point is present on the right side of the number.

Floating point representation

Fractions are represented as floating point numbers. A floating point number consists of two
parts; MantissaM and Exponent E, which denote the number M x BF, where E is the base.

Non-numeric data

Non-numeric data usually takes the form of variable-length character strings encoded in one
or several standard codes, such as ASCII code.

Word length

Information is represented in a computer by means of binary words. A ‘word’ is a unit of
information of some fixed length ‘n’. A word with n bits can represent information up to 2"
different things. For example, with n=4, the 10 decimal digits can be encoded as under:

0=0000 | 1=0001 | 2=0010 | 3=0011 | 4=0100

5=0101 | 6=0110 | 7=0111 | 8=1000 | 9=1001

Bytes

Bytes are 8-bit words. They are used to encode alphanumeric characters or symbols, which
are generaly the standard symbols on the keyboard. A byte can store two decimal digits with
no wasted space. Most computers have the 8-bit byte as the smallest addressable unit of
information.

111

Within a computer, several word sizes are used to load and store various instructions.
Example load and store need long address fields. Precision of a number word is determined
by its length.

6.5 ADDRESSING MODES

In general, a program operates on data that resides in computer’s memory. The data can be
organized in various ways. Programmers use organizations called data structures to represent
data used in computation. The different ways in which the location of an operand is specified
in an instruction is referred to as ‘addressing modes’.

The address field of a typical instruction is relatively small. The aim is to reference a large
number of memory locations in main memory or virtual memory. To achieve this, a variety
of addressing methods are employed. They involve trade-offs between address range and
number of memory references. Some of the common addressing techniques are as under:

Immediate addressing
Direct addressing
Indirect addressing
Register addressing
Register Indirect addressing
Displacement addressing

7. Stack addressing
These modes are explained with the help of figures for the address and the method of
accessing the memory. The notations used are as follows. A — Contents of address field in
the instruction; R — Contents of address field that refer to a register; EA — Effective
address of the memory location containing the referenced operand; (X) — Contents of
location X. For the control unit to determine which addressing mode is being used, one or
more bits in the instruction format can be used as the mode field. The effective address
will either be a main memory address, virtual memory address or aregister.

© gk~ wbdpE

1. Immediate addressing

Immediate addressing is the simplest form of addressing. In this form of addressing, the
operand is actually present in the instruction.

OPERAND =A

Instruction

| | Operand |

This mode is used to set initial values of variables, or to define constants. The number is set
as two’s complement and thFigure 6.1 Immediate Addressing he sign bit. Advantage of
this mode is that only the instruction-fetch is required and no memory reference is needed,
thus saving one instruction cycle. Disadvantage is that the size of the number is restricted to
the size of the addressfield.

112

2. Direct addressing
Thisis aso avery simple form of addressing. In direct addressing, the address field contains
the effective address of the operand, as shown in Figure 6.2 .

EA = A Instruction Memory
Ll A |

Y

Operand

Figure 6.2 Direct Addressing
This scheme requires only one memory reference. The limitation isthat it makes available
only limited address spaces and is usually less than the word length.

3. Indirect addressing
In indirect addressing, the address field refers to address of a word in memory, which in
turn contains the full address of the operand. Thisis demonstrated in Figure 6.3.

EA =[A]

Instruction Memory
L[A

Operand

Y

Figure 6.3 Indirect Addressing

The advantage of this mode is that for word length of N, address space of 2" is available. The
disadvantage is that two memory references are needed to fetch the operand. One referenceis
needed to get the address of the operand and the second reference getsits value.

4. Register Addressing

Register addressing is similar to direct addressing. The difference is that the address field
refers to aregister rather than amemory location. Thisform of addressing is exhibit in Figure
6.4.

113

EA =R Instruction
R

Registers

Y

Operand

Figure 6.4 Register Addressing

The advantage of register addressing is that only small address field is needed in the
instruction. This means that no memory reference is required. Thus, register addressing is
very fast. The disadvantage of this mode is that address space very limited.

5. Register Indirect Addressing
Register indirect addressing is similar to indirect addressing but address field refers to a
register rather than a memory location. Figure 6.5 shows this form of addressing.

EA =[R]

Instruction
R

Memory
Registers

Figure 6.5 Register Indirect Addressing
The advantage of this form of addressing is that though it is the same as indirect

addressing, but use one less memory reference. The disadvantage is that it has to access
the registerstwice.

6. Relative Addressing
This form of addressing combines the capabilities of direct addressing and register
indirect addressing. The effective addressis given as:

EA=A +[R]

The implied register is the program counter. Current instruction address is added to the
address field to produce effective address. The effective address is a displacement relative
to the address of the instruction.

114

Base Register Addressing
The referenced register contains a memory address, and the address field contains a
displacement from that address. The register reference may be explicit or implicit. This
kind of addressing is quite convenient to implementation segmentations. In some
implementations, a single segment-base register is used. In other usage, a programmer
may choose aregister to hold the base address of the segment.

Index Addressing
In this form of memory reference, the address field references a main memory address,
and the referenced register contains a positive displacement from that address. Figure 6.6
depicts Index addressing. This usage is just the opposite of ‘base-register’ addressing.
Here the address field is considered to be a memory address. The method of calculating
the effective address is the same as base register addressing.

Instruction
L [R [A]

Memory

b

Registers

Figure 6.6 Index Addressing

Indexing is used in iterative operations. Index registers are used for such iterative tasks.
Here the index register isjust incremented or decremented.

EA = EA +(R)
R« (R)+1

First the contents of the address field are used to access a memory location containing a
direct address. The value of the index register is then added to the register value.

. Stack addressing

The stack is a reserved block of locations. The stack pointer is maintained in a register.
Stack addressing is depicted in Figure 6.7. Stack addressing is similar to register indirect
addressing. Stack Pointer maintained in aregister

115

EA =[R]

Instruction

Implicit

| —

Top of Stack

Figure 6.7 Stack Addressing
Stack mode of addressing is a form of implied addressing. The machine instructions do
not include a memory reference. The top of the stack isthe implied address.

116

Bachelor of Computer Applications (BCA)

COMPUTER SYSTEM ARCHITECTURE

UNIT VII: INPUT-OUTPUT ORGANIZATION

STRUCTURE

7.0 Objectives

7.11/0 interfaces

7.2 Datatransfer schemes

7.31/0 control mechanisms
7.3.1 Program controlled
7.3.2 Interrupt controlled
7.3.3 DMA controller

7.4 Summary

117

7.0 OBJECTIVES
e Understanding I/O interfaces and data transfer schemes.
e Understanding I/O control mechanisms - Program controlled, Interrupt controlled and
DMA controller

7.11/O INTERFACES

The /O subsystem of a computer provides an efficient mode of communication between the
central system and the outside environment. It handles all the input- output operations of the
computer system. Input or output devices that are connected to computer are called peripheral
devices

Each 1/0 device assigned a unique set of address

Device recognizes this address and responds to the commands given by the CPU

Address Bus

A Data Bus
Control Bus

Address Contral Data and status
decoder circuit registers 10 interface

~ ~

| Input-Cutput devices ‘

Block diagram: Hardware required to connect 1/0O devices

Interface is a shared boundary between two separate components of the computer system
which can be used to attach two or more components to the system for communication
purposes. There are two types of interface

1. CPU Inteface
2. 1/0O Interface

In Input-Output Interface, peripherals connected to a computer need special communication
links for interfacing with CPU. In computer system, there are specia hardware components
between the CPU and peripherals to control or manage the input-output transfers. These
components are called input-output interface units because they provide communication
links between processor bus and peripherals. They provide amethod for transferring
information between internal system and input-output devices.

The block diagram of an Input-Output Interface unit contain the following blocks:
1. Data Bus Buffer

2. Read/Write Control Logic

3. Port A, Port B register

4. Control and Status register

118

https://www.geeksforgeeks.org/io-interface-interrupt-dma-mode/

CPU I v

= T
Dats Buin @
BuifTar
Internal
e T Burs < 0 nirod
! ™ 5 ROOHR .. FRgisls L
Ay - 5, ";I'LI':';'-'C‘:"
1
e
* WR N Stasus |
B ragistar [

arface Bnit

Data Bus Buffer :
The bus buffer use bi-directional data bus to communicate with CPU. All control word data
and status information between interface unit and CPU are transferred through data bus.

Port A and Port B :

Port A and Port B are used to transfer data between Input-Output device and Interface Unit.
Each port consist of bi-directiona data input buffer and bi-directiona data output buffer.
Interface unit connect directly with an input device and output disk or with device that
require both input and output through Port A and Port B i.e. modem, external hard-drive,
magnetic disk.

Control and Status Register

CPU gives control information to control register on basis of control information. Interface
unit control input and output operation between CPU and input-output device. Bits which are
present in status register are used for checking of status conditions. Status register indicate
status of data register, port A, port B and aso record error that may be occur during transfer
of data.

Read/Write Control Logic:

This block generates necessary control signals for overall device operations. All commands
from CPU are accepted through this block. It also alow status of interface unit to be
transferred onto data bus through this block accept CS, read and write control signal from
system bus and S, S; from system address bus. Read and Write signal are used to define
direction of datatransfer over data bus.

Read Operation: CPU <---- I/O device
Write Operation: CPU ----> |/O device

Theread signal direct data transfer from interface unit to CPU and write signal direct data
transfer from CPU to interface unit through data bus.

119

Address bus is used to select to interface unit. Two least significant lines of address bus (Ao,
A1) are connected to select lines Sy, S;. Thistwo select input lines are used to select any one
of four registersin interface unit. The selection of interface unit is according to the

following criteria:

7.2DATA TRANSFER SCHEMES

Data transfer schemes can provide an efficient means of transmitting data between the
processing unit and the /O devices. In a computer, the data transfer happens between any of
these combinations CPU and memory, CPU and I/O devices, and memory and 1/0O devices.

A compuiter is interfaced with many devices of different speeds. Therefore, 1/0 devices may
not be ready to transfer data as soon as the microprocessor issues the instruction for this
purpose. Many data transfer schemes have been developed to solve this problem.

Classification of Data Transfer Schemes

The data transfer schemes have been broadly classified into two categories
Programmed Data Transfer Schemes

In a programmed data transfer scheme, data transfer takes place between the CPU and 1/0
device under the control of a program that resides in the memory. In this scheme, the program
is executed by the CPU. This scheme is used when a limited extent of information is to be
transferred.

The three important types of programmed data transfer schemes are —

e Synchronous Data Transfer Scheme — This type of programmed data transfer
scheme is used when the processor and the 1/O devices match in speed. Some suitable
instructions such as IN and OUT are used for ‘to and from’ data transfer of I/O
devices.

e Asynchronous Data Transfer Scheme— This type of programmed data transfer
scheme is used when the speeds of 1/0 devices and the microprocessor do not match
and also when the timing characteristics of the I/O devices are not predictable.

e Interrupt Driven Data Transfer Scheme— In this programmed data transfer
scheme, the processor enables the 1/0O devices and then continues to execute its
original program instead of wasting time checking the status of the I/O devices. When
the 1/O devices are ready to send and receive data, then the processor is informed
through a specific control line called the ‘Interrupt line’.

« DMA Data Transfer Scheme

In DMA datatransfer, datais directly transferred from the memory to the I/O device or vice
versa without going through the microprocessor. This scheme is used when there is a
requirement to send bulk data. Transferring bulk data using a microprocessor consumes more
time. Therefore, the microprocessor performs the data transfer between an 1/0O device and
memory using this DMA technique.

120

For a DMA transfer, 1/0 devices must also contain electronic circuitry to generate control
signals. But most 1/0O devices are not equipped with such facilities. Hence, to solve this
problem, manufacturers have developed a single-chip programmable DMA controller to
interface 1/0O devices with the microprocessor for DMA transfer.

7.31/0 CONTROL MECHANISMS

There are three basic I/0 mechanisms that computer systems can use to communicate with
peripheral devices. memory-mapped input/output, 1/O-mapped input/output, and direct
memory access (DMA). ... Each 1/O mechanism has its own set of advantages and
disadvantages, which we will discussin the following sections.

7.3.1 Programmed 1/0O

Programmed 1/O is a method used in all computers for controlling 1/0 operations. It is most
useful in small, low-speed systems where the cost of hardware has to be kept minimum. In
this method of 1/0, al 1/O operations are executed under the direct control of the CPU. The
data transfer is generally between two programmable registers. The 1/O device does not have
a direct access to the main memory. A data transfer from an 1/0O device to main memory
requires CPU to execute many 1/O instructions.

In programmed 1/O, the CPU, the memory and the 1/0O devices communicate through the
system bus. The address lines that are used to select the memory locations can aso be used to
select the I/0 devices which are connected to 1/0 ports that have addresses. The CPU does
not make any difference between the addresses of memory |ocations and the addresses of 1/0
ports. Programmed 1/0 is further of two types. Memory mapped 1/0 and 1/0 Mapped I/0O

In Memory Mapped I/0O, the same bus is used to address both memory and 1/0 devices. A
part of the main memory addressable space is assigned to I/O ports. The instructions that are
used for addressing the memory and for addressing the 1/0O ports are the same, except that in
the former case, address of memory is referenced whereas in the latter case, address of an 1/0
port is referenced. The usual load and store instructions are used to transfer data words to or
from the 1/0O ports and no special 1/O instructions are needed. Figure 7.14(a) shows the
memory structure for memory-mapped 1/0. The control lines READ and WRITE are
activated by the CPU while processing the memory instruction.

In I/O mapped 1/0, a specia class of CPU instructions are used for performing 1/0. These
instructions are IN and OUT instructions which can read and write a single byte to an 1/O
device. 1/0 devices have a separate address space from general memory, either provided by
an extra I/O pin on the CPU’s physical interface, or an entire bus is dedicated to I/O. In the
I/0 mapped 1/0, the addresses assigned to memory and 1/0 ports are separate. In other words,
the address spaces of memory and 1/0 devices are different. The structure is shown in Figure
7.14(b). The Read M and Write M control lines are activated by memory referencing
instruction which does not affect the I/O device.

121

Data
Address

Read

Ll L L

CPU Y [ifoport1][i/oport 2] eee [I/0portn]

| /0 device s | | IfOdevice M |

Figure 7.14{a) Memory-Mapped /0 (Shared Memory and |/0 Address Space

The CPU executes separate |/O instructions to activate Read 1/0O and Write 1/O lines, which
causes aword to be transferred between the addressed 1/0 port and the CPU.

Data
Address

Read M
T wirite m

|/Oport 1| |1/Oport 2| ee® /0 port
PU wna | [/Oport1][i/Opart 2] eee [i/Oportn]

Read 1/O

Wirite 10

Figure 7.14{b)1/0 Mapped|/O (Separate Memory and Address Space

Thus, just two 1/O instructions are needed to implement 1/0O mapped I/O. The instruction IN
causes a word to be transferred from the 1/0 port to one of the registers of the CPU. The
instruction OUT transfers a word from a register of the CPU to the 1/0 port. When the CPU
executes the instruction IN or OUT, the /O port is expected to be ready to respond to the
instruction. The CPU can be programmed to test the status of the device. The status of the
I/O deviceis checked by performing the following steps:

Limitations of Programmed I/O:

The limitation of this method is that when processor issues command to the I/O module, it
must wait until the I/O operation is complete. As processor is faster than I/0O module, lot of
time is wasted. The CPU takes time to test and service the 1/0 device, which limits the speed
of data transfer. Thus, the performance of the entire system is affected. The time that is spent
by the CPU in testing status of 1/0 device can be better utilized in other tasks.

7.3.2 Interrupt Initiated 1/0

Interrupts are provided to improve the efficiency of the processor as most external devices are
much slower than the processor. Thus, whenever a device requests for 1/O, the CPU may
initiate an interrupt so that the already executing job can wait for the time till the 1/O is
completed. An example is the data being transferred by the processor to the printer.

In the methods of 1/0O discussed above, the processor had to wait for /O module to start
read/write of data. The wait state can be reduced or eliminated if processor issues an 1/0O
command to a module without introducing an idle state. For such an event to happen, the 1/O
module will interrupt the processor to request service when it is ready to exchange data with
the processor. The processor executes the data transfer and then resumes its normal

122

processing. The interrupt signal is generated in case of exceptiona events that cause CPU to
transfer control temporarily from its current program to another program. This program is
known as ‘interrupt handler’ that performs the program to the event that needs service.
Interrupts can be internal or externa. I/O interrupts are externa interrupts where the CPU
initiates or terminates an /O request. Interrupts are also produced by hardware or software
error detection.

The interrupt is provided to the program running in the CPU by activating a control line
called ‘Interrupt Request’, which connects the interrupt source to the CPU. A register in the
CPU stores the interrupt indicator that the CPU tests at regular intervals, usually at the end of
every instruction cycle.

When two or more interrupt requests are present at the same time, priorities must be assigned
to the interrupts. The interrupt with the highest priority is selected for handling. The
following events occur:

CPU identifies source of interrupt

CPU obtains memory address of the required interrupt handler.
Save status of CPU registers and PC in a subroutine call.

Load address of the interrupt handler in the PC.

Execute the routine till areturn instruction is reached.

© g M~ w Dd P

When return instruction encountered, control is transferred to the interrupted program.

If an interrupt is masked, the CPU ignores such interrupts. High priority interrupts are
serviced before the low priority interrupts.

Interrupt Selection

The techniques used for selection of an interrupt are polling, daisy chaining and independent
requests.

Vectored I nterrupts

‘Vectored interrupt’ is the kind of interrupt where the interrupting device supplies the CPU
with the starting address or the ‘interrupt vector’ of the program. In this case, the interrupt
request from a particular device causes a direct hardware implementation to the correct
interrupt-handling program. When multiple requests for interrupts are received, each interrupt
line generates a unique fixed request. The address made available by each request is used to
modify the contents of the PC. Interrupt requests are received in an interrupt register. If the
interrupt register has b bits, it can give priority to b devices, where bit b; will enable or
disable the line connecting device i. Figure 7.15 depicts a multiple-interrupt line arrangement
using Vectored Interrupt

123

Interrupt
Reiister

INT Regl

| /0 Devicel

INT Reg2
|/ Device?

INT Req2

/0 Device3
INT Req4d

/0 Deviced

1/0 Devices
CPU

Figure 7.15 %ectored Interrupt &rchitecture

The program control is transferred using Vectored Interrupts with the arrangement shown in
Figure 7.15. When an interrupt request from 1/O port i is accepted then the address is
generated from the priority encoder and used by the PC. As soon as interrupt occurs, many
events start both in the hardware and software. The events are: Device issues an interrupt
signal to the processor, Processor finishes execution of current instruction before responding
to the interrupt, Processor sends an acknowledgement signal to the device that issued the
interrupt, and the control is transferred to the interrupt routine after saving information of
program status word, PC pushed onto the stack and needed to resume the current program at
the point of interrupt. After this, PC isloaded with the interrupt service routine

The process of interrupt initiated 1/O is that the 1/0O module recelves a Read command from
the processor. The 1/0O module then reads the data in from the concerned peripheral device.
The datais input in the data register of the module and at the same time an interrupt signal is
sent over the control line. The module then waits until the processor requests for the data.
When the request is made, module places the data on the data bus, and then is ready for
another 1/0O operation. Thus, for the input operation, the processor just has to issue a Read
command, and then continue doing whatever it was doing. When the interrupt occurs, the
status of al the registersis saved and the I/O is processed.

A tradeoff between programmed 1/0O and Interrupt initiated 1/0 is termed as DMA, and is
used to transfer the data over the 1/0 bus with the least intervention of the CPU.

7.3.3DMA Controller
Methods of transferring data between the peripheral device and the rest of the system require
a large overhead, as well as the CPU time. The CPU affects the rate of 1/0 transfer in two
ways. First, adelay occurs while the 1/0 device is waiting to be tested. Second, Programmed
I/O transfers data through the CPU rather than passing the data directly to the 1/0 device.

A solution is not to bring the CPU in the data transfer and have the system memory
communicate directly with 1/0O device.

Direct Memory Access (DMA) refers to a method of movement of data where a peripheral
device transfers information directly to or from memory, without the CPU being required to
perform the transfer. DMA is a system that can control the memory without using the CPU,
alowing certain hardware subsystems within a computer to access system memory for

124

reading and/or writing independently of the CPU. Direct memory access (DMA) channels are
system pathways used by many devices to transfer information directly to and from memory.
Examples of hardware systems that use DMA include disk drive controllers, graphic cards,
network cards and sound cards. Computers that have DMA channels can transfer data to and
from devices much more quickly than computers without a DMA channel. This is useful for
making quick backups and for real-time applications.

Principle

DMA is an essential feature of all modern computers as it allows devices to transfer data
without subjecting the CPU to spend time waiting for certain events to happen. Otherwise,
the CPU would have to copy each piece of data from the source to the destination. A DMA
transfer essentially copies a block of memory from one device to another. While the CPU
initiates the transfer, it does not execute the transfer itself. The transfer is performed by a
DMA controller which istypically part of the motherboard.

A typica DMA request is used to copy a block of memory from system RAM to or from a
buffer on the device. Such an operation does not stop the processor to perform other tasks.
DMA transfers are essential to high performance systems

DMA module takes over control of the system to transfer data to and from memory. It uses
the bus when the processor does not need it, or it suspends operation temporarily.
The process of DMA is summarized below:

1. Know whether read or write is requested, using read/write control line between
processor and DMA module
2. Know the address of the 1/0O device issuing request and communicate on the data line
3. The starting address of memory location to read or write, communicated on data lines
and stored by the DMA module in the IODR
4. The number of words to be read or written, which is stored in the data count register
DCR
DMA Controller is a hardware device that allows I/O devices to directly access memory with
less participation of the processor. DMA controller needs the same old circuits of an interface
to communicate with the CPU and Input/Output devices.

Figure below shows the block diagram of the DMA controller. The unit communicates with
the CPU through data bus and control lines. Through the use of the address bus and allowing
the DMA and RS register to select inputs, the register within the DMA is chosen by the CPU.
RD and WR are two-way inputs. When BG (bus grant) input is O, the CPU can communicate
with DMA registers. When BG (bus grant) input is 1, the CPU has relinquished the buses and
DMA can communicate directly with the memory.

The DMA controller has three registers as follows.
e Addressregister — It contains the address to specify the desired location in memory.
e Word count register — It contains the number of words to be transferred.
o Control register — It specifies the transfer mode.

125

https://www.geeksforgeeks.org/direct-memory-access-with-dma-controller-8257-8237/

All registers in the DMA appear to the CPU as /O interface registers. Therefore, the CPU
can both read and write into the DMA registers under program control via the data bus.

—
2=y] t
TR i |
—)
ra—

Block Diagram of DMA controller
Explanation :
The CPU initializes the DMA by sending the given information through the data bus.

e The starting address of the memory block where the datais available (to read) or
where data are to be stored (to write).

e It aso sendsword count which isthe number of words in the memory block to be
read or write.

o Control to define the mode of transfer such as read or write.
e A control to begin the DMA transfer.

DMA transfers overcome the problem of occupying the CPU for the entire time it's
performing a transfer. The CPU initiates the transfer, then it executes other opswhile
the transfer is in progress, findly it receives aninterrupt from the DMA controller when
the transfer is done Hardware using DMA: disk drives, graphics cards, network cards,
sound cards DMA can lead to cache coherency problems|f a CPU has a cache and
external memory, then the datathe DMA controller has access to (stored in RAM)
may not be updated with the correct data stored

The objective of DMA isto move functionality from the CPU to peripherals because:

e Peripherals useless current than the CPU;

e Performing operations directly between peripherals alowsthe CPU to shut down,
saving system power;

¢ Minimal software requirements and CPU cycles

126

https://www.geeksforgeeks.org/difference-between-cpu-and-gpu/

7.4 SUMMARY

The main purpose of the I/O interfaces is to transmit and receive data; however, the portion
designated as an 1/0 interface may contain additional resources, such as voltage transators,
registers, impedances, and buffers. Peripherals connected to a computer need special
communication links for interfacing with CPU. In computer system, there are specia
hardware components between the CPU and peripherals to control or manage the input-
output transfers. These components are called input-output interface units because they
provide communication links between processor bus and peripherals.

Modes of |/O Data Transfer

Datatransfer between the central unit and 1/0O devices can be handled in generally three types
of modes which are: Programmed 1/O, Interrupt Initiated 1/0O, Direct Memory Access

Programmed I/O instructions are the result of I/O instructions written in computer program.
Each data item transfer is initiated by the instruction in the program. Usually, the program
controls data transfer to and from CPU and peripheral. Transferring data under programmed
I/O requires constant monitoring of the peripherals by the CPU. In the programmed 1/O
method the CPU stays in the program loop until the I/O unit indicates that it is ready for data
transfer. Thisis time consuming process because it keeps the processor busy needlesdly.

This problem can be overcome by using interrupt initiated 1/O. In this when the interface
determines that the peripheral is ready for data transfer, it generates an interrupt. After
receiving the interrupt signal, the CPU stops the task which it is processing and service the
I/O transfer and then returns back to its previous processing task. In the discussion on
computer architecture and the role of the Central Processing Unit a brief description was
given on how the CPU may transfer data to or from a number of externa (other than
memory) devices. The operation treated the I/0O system for reading and writing in the same
manner as memory, using address, data lines and WR RD control lines. This requires CPU
intervention and is costly in "time". Direct Memory Access--the ability of an I/O subsystem
to transfer data to and from a memory subsystem without processor intervention. DMA
Controller--a device that can control data transfers between an 1/0 subsystem and a memory
subsystem in the same manner that a processor can control such transfers.

Using Direct Memory Access solves many problems. Removing the CPU from the path and
letting the peripheral device manage the memory buses directly would improve the speed of
transfer. This technique is known as DMA. In this, the interface transfer data to and from the
memory through memory bus. A DMA controller manages to transfer data between
peripherals and memory unit. The DMA controller can issue commands to the memory that
behave exactly like the commands issued by the CPU. The DMA controller in a senseis a
second processor in the system but is dedicated to an 1/0 function. The DMA controller as
shown below connects one or more 1/O ports directly to memory, where the 1/O data stream
passes through the DMA controller faster and more efficiently than through the processor as
the DMA channel is specialised to the datatransfer task

127

The DMA adds one more level of complexity to the I/O interface because a DMA controller
has independent access to memory. One set of wires (bus) can carry at most one transaction
at atime. If the DMA and a microprocessor share the signal wire to memory there must be a

mechanism to arbitrate which shall have access to memory when both attempt to at the same
time.

128

Bachelor of Computer Applications (BCA)

COMPUTER SYSTEM ARCHITECTURE

UNIT VIII: MEMORY UNIT

STRUCTURE

8.0 Objective
8.1 Memory Hierarch: An Introduction
8.2 High-speed Memories
8.3 Organization of a Cache Memory Unit
8.3.1 Characteristics of Cache Memories
8.3.2 Cache Performance
8.3.3 Mapping Datain Memory to a L ocation in Cache
8.4 Virtual Memory
8.4.1 Virtual Address Space
8.4.2 Physical Address Space
8.5 Memory Management
8.5 Memory M anagement

8.6 Summary

129

8.0 Objectives
e Tounderstand Memory hierarchy and High-speed Memories

e Organization of a Cache Memory Unit, Virtual Memory and Memory M anagement
8.1 MEMORY HIERARCH: AN INTRODUCTION

The memory system of a computer comprises of various kinds of memory where programs

and data are stored. Various types of memories are used in the computer system. Idedlly, the
memory should be fast, large, and inexpensive. But it is not possible to meet al these
requirements simultaneously. To solve this problem, many different structures and
organizations are used, which will be discussed in the following sections.

The basic unit of memory is the binary digit or bit. The bit may contain O or 1. The programs
and data are stored in the memory, which are transferred to the CPU for the execution. To
increase the performance of the computer system, the processor speed has to match with the
rate of information transfer from the memory. The aim is to provide high bandwidth of the
memory at reasonable cost.

In computer architecture, the memory hierarchy separates computer storage into a hierarchy
based on response time. Since response time, complexity, and capacity are related, the levels
may also be distinguished by their performance and controlling technol ogies.

Memory Hierarchy is an enhancement to organize the memory such that it can minimize the
access time. The Memory Hierarchy was developed based on a program behavior known as
locality of references.

The various types of memories in the computer have different speeds and costs, arranged as
levels in a hierarchy. The goal in designing an n-level memory hierarchy is to achieve a
performance close to that of the fastest memory, and cost per bit of memory should be close
to the cheapest memory. The hierarchy is structured so that the memories at leve i are
‘higher’ than the memories at level i+1. The word ‘higher’ means that the performance
attributes should be higher. The speed is inversely proportional to capacity and cost. The
hierarchy of memory in ageneral computer is as shown below:

130

>~

o
g ,: Lovel 0 R:;gggﬁs > 'g
? E Levol 1 Car.'j-n memaory \ g-;:?
v . -

2 g Lﬁve! ? T —_— —’A_a_'r! ﬂ———'m'.‘lo"" _— \‘ ;’: Ca
no Leveld/ Orsk cache N 2
g a Levet 4 ,/'_" i Magnelic disk N\

} Leves/ Optical disk / Magnelic tapes \

Memory Hierarchy

Memories in a hierarchy can be classified on the basis of method of access and time of
access, which are explained below:
i. Accessing method
The method of access of a memory divides the memories into three basic classes:
e Random-Access Memory (RAM)
The access time t; of aRAM word isindependent of itslocation

e Seguential-Access Memory (SAM)
Static random-access memory (static RAM or SRAM) is a type of random-access memory
(RAM) that uses latching circuitry (flip-flop) to store each bit. SRAM is volatile memory;
data is lost when power is removed. The information in SAMs is accessed serially or
sequentially. Examples are shift register memory like a first-in-first-out (FIFO) buffer,
charged-coupled-devices (CCDs) and magnetic bubble memories. A direct-access storage
device (DASD) is a secondary storage device in which each physical record has a discrete
location and a unique address Term DASD is a shorthand describing hard disk drives,
magnetic drums, and data cells. DASDs are rotational devices made of magnetic materials
where any block of information can be accessed directly. They are accessed through special
interfaces called channels.
ii. Speed or AccessTime
The memory hierarchy is generally organized so that the highest level has the fastest speed
and the lowest level has the slowest speed, asis shown in Figure 6.1. On the basis

of accesstime, the memory is classified as under:

e Primary Memory
ThisMemory is made of RAMs

131

e Secondary Memory
Secondary Memory is made of DASDs or SAMs. The three most common DASDs are
drums, fixed-head disks and movable-arm disks.

8.2HIGH-SPEED MEMORIES
Caches are high speed memories realized using SRAM technology that stores a small subset

of the datain the main memory and that the CPU can access directly and with minimal delay.
Data is transferred in and out of the cache as and when required by the CPU. Caches
nowadays are included on the processor chip itself.

Since processor chip size cannot be increased beyond a certain size cache size on processor
chips are usually very limited. All high performance processors have some form of on chip
cache memory. This cache can again be divided into separate instruction and data caches.
This is called a Split cache. Having a combined cache offers greater hit rate as it offers
flexibility in mapping new information in the cache. Split caches on the other hand make it
possible to simultaneously access both the caches. This leads to increased performance but
needs more complicated circuitry for the parallel access.

High Performance Processors have aso included multiple levels of cache. L1 cacheis present
on chip and L2 is implemented using SRAM technology and is external to the processor.
However, L2 cache in a much smaller size can be included on chip as well thus giving multi-

level on chip cache.

If two levels of cache are used and as L1 is more close to the processor it is important to
design the L1 cache in such way that promotes faster access by the processor. Thisis because
its access time has a large effect on the clock rate of the processor. A cache even if it is on
chip cannot be accessed at the same speed as the CPU registers. The cache is much bigger
and complex. Accesses to cache can be speeded up by accessing multiple words at the same
time and then transferring it one by one to the processor for execution. This technique is used
in many processors. The second level and subsequent levels of cache are now designed to be

much slower than the L1 cache but have to be big enough to have a high hit rate.

132

8.3 ORGANIZATION OF A CACHE MEMORY UNIT

Cache memory, aso called cache, is supplementary memory system that temporarily stores

frequently used instructions and data for quicker processing by the central processing unit
(CPU) of a computer. Cache holds a copy of only the most frequently used information or
program codes stored in the main memory. The term cache refers to fast intermediate
memory within alarge memory system. They provide the CPU with fast, single-cycle access

to the externa memory. Cache acts as a buffer between CPU and main memory.

8.3.1 Characteristics of Cache Memories

In the memory hierarchy, it is seen that the speed of main memory is very less as compared to
the speed of the CPU’s registers. The speed of cache is quite close to the speed of the CPU.
Thus, by the use of cache memory, the processor does not have to spend much time in

waiting to access instructions and data from memory.

Cache Memory is a specia very high-speed memory. It is used to speed up and synchronize
with high-speed CPU. Cache memory is costlier than main memory or disk memory but
economical than CPU registers. Cache memory is an extremely fast memory type that acts as
a buffer between RAM and the CPU. It holds frequently requested data and instructions so
that they are immediately available to the CPU when needed. Cache memory is used to
reduce the average time to access data from the Main memory. The cache is a smaller and
faster memory which stores copies of the data from frequently used main memory locations.

There are various different independent cachesin a CPU, which store instructions and data.

The cache is effective because of its property of ‘locality of reference’. This principle is
based on the fact that instructions in localized areas of the program are executed repeatedly
during some time period, and the rest of the program is accessed relatively infrequently. The
active program is placed in the cache memory and the total execution time is reduced

significantly. The arrangement of the cache memory is shown in Figure 8.1.

Figure 8.1 Cache memory arrangement

133

8.3.2 Cache Performance
When the processor needs to read or write alocation in main memory, it first checksfor a

corresponding entry in the cache.

o If the processor finds that the memory location is in the cache, a cache hit has

occurred and datais read from cache

o If the processor does not find the memory location in the cache, cache miss has
occurred. For a cache miss, the cache allocates a new entry and copies in data from

main memory, then the request is fulfilled from the contents of the cache.

If there is a cache memory in a computer system, then at each access to a main memory
address in order to fetch data or instructions, processor hardware sends the address first to the
cache memory. The cache control unit checks if the requested information resides in the
cache. If so, we have a "hit" and the requested information is fetched from the cache. The

actions concerned with a read with a hit are shown in the figure below.

Cache mem ory Main memory
address
Processor »- |
- \
word 71 1

il block

the same address

block |'

a copy of information
from main memory

‘Locality of reference’ implies that whenever an information item (instruction or data) is
first needed, it should be brought in cache and remain there till it is needed again. Also,
instead of fetching just one item from the main memory to the cache, several items that reside

at adjacent addresses should be aso brought in at the same time.

Example

When an application is running, it may cache certain datain the system memory, or RAM. ...
For example, if you are working on a video project, the video editor may load specific video

clips and audio tracks from the hard drive into RAM.

134

Cache memory temporarily stores information, data and programs that are commonly used by
the CPU. When data is required, the CPU will automatically turn to cache memory in search
of faster data access.

8.3.3 Mapping Datain Memory to a L ocation in Cache

Cache is close to CPU and faster than main memory. But at the same time is smaller than
main memory. The cache organization is about mapping data in memory to a location in

cache.

One way to go about this mapping is to consider last few bits of long memory address to find

small cache address, and place them at the found address.

But the problem with this approach is, loss of the information about high order bits and no

way to find out the lower order bits belong to which higher order bits.
The solution isto use Tag

To handle above problem, more information is stored in cache to tell which block of memory

is stored in cache. We store additional information as Tag.

If the requested information does not reside in the cache, we have a"miss" and the necessary
information is fetched from the main memory to the cache and to the requesting processor
unit. The information is not copied in the cache as single words but as alarger block of a
fixed volume. Together with information block, a part of the address of the beginning of the
block is aways copied into the cache. This part of the addressis next used at readout during
identification of the proper information block. The actions executed in a cache memory on

"miss" are shown below.

Cache memory Main memory

address
.
»

Processor

i S |

Fetching the missing
block

Explanation:

Assume asingle level of cache memory below. If there are two cache levels, then on "miss’
at thefirst level, the addressis transferred in a hardwired way to the cache at the second level.

135

If at thislevel a™hit" happens, the block that contains the requested word is fetched from the
second level cacheto the first level cache. If a"miss’ occurs aso at the second cache level,
the blocks containing the requested word are fetched to the cache memories at both levels.
The size of the cache block at thefirst level isfrom 8 to several tens of bytes (a number must
be a power of 2). The size of the block in the second level cache is many times larger than the
size of the block at thefirst level.

Cache Block

A set of contiguous address location of same size is referred to by the term ‘block’ or ‘cache
lines’, which are of the same length. A cache typically contains 4 to 64 consecutive bytes.
Lines are numbered consecutively starting from 0. Thus, with 32 byte line size, line 0 is 0 to
31 bytes, line 1 is bytes 32 to 63 and so on. At any time, some lines are in the cache. When
memory is referenced, the cache controller circuit checks if the referenced word is in the
cache or not. In case of a hit, the data is transferred from the cache. In case of a miss, a
replacement policy is used. When aread request is received from the processor, the contents
of ablock of memory words containing the location specified are transferred into the cache
oneword at atime. After this, when the program references any of the locations in this block,
these contents are read directly from the cache. As the size of the cache memory is small, the
number of blocks in the cache is small as compared to the total number of blocks of the main
memory. A mapping function is used for the correspondence between the main memory

blocks and those in the cache.

The memory words in a cache are stored in a cache data memory. The main memory is
divided into set of blocks and the contents of the data memory are the sets of main memory
blocks. The data memory is grouped into small pages called blocks or lines. Each cache block
is marked with its block address, which is referred to as tag. The tag specifies to what part of
memory space the block belongs. The collection of tag addresses currently assigned to the
cache are stored in a special memory called the cache tag memory or directory. The
structure of cache is shown in Figure 8.2. For the cache to improve performance of a
computer, the time required to check the tag addresses and access the cache’s data memory
must be less than the time required to access the main memory. For example, if main memory

using DRAM has access time tap = 50 ns, cache’s data memory in SRAM technology has

136

access time tas = 10 ns, then the organization of the cache should be such that matching of

tag addresses should be extremely fast.

Hit Cache
Cachetag
Data
Memary
) hemary
(Directory)
»
£
Address Data

Figure 8.2 Structure of Cache

84VIRTUAL MEMORY

Virtual memory is atechnique of memory management that is used to allow slow memory to

be used as a level of memory system. It also provides protection between programs running

on the same system so that one program cannot modify another program’s data.

Virtual Memory is a storage scheme that provides user an illusion of having a very big main

memory. Thisis done by treating a part of secondary memory as the main memory.

In this scheme, user can load the bigger size processes than the available main memory by

having the illusion that the memory is available to load the process.

Instead of loading one big process in the main memory, the Operating System loads the
different parts of more than one process in the main memory. By doing this, the degree of
multiprogramming is increased and therefore, the CPU utilization will also be increased. In
modern world, virtual memory has become quite common these days. In this scheme,
whenever some pages need to be loaded in the main memory for the execution and the
memory is not available for those many pages, then in that case, instead of stopping the pages
from entering in the main memory, the OS search for the RAM area that are least used in the
recent times or that are not referenced and copy that into the secondary memory to make the
space for the new pages in the main memory.

Since al this procedure happens automatically, therefore it makes the computer feel likeit is
having the unlimited RAM.

137

The concept of virtual memory was developed to reduce the requirements of having a large
main memory. The hard disks or other magnetic media forms the bottom layer of the memory
system. DRAMs or core memory form the main memory. The address space of a program is
divided into pages, which are adjacent pages of data, and are stored on the magnetic media.
When a page of data is referenced, the system copies it into the main memory and is used for
the execution of the program. This may require another page of data to be copied from the
main memory to the magnetic disk.

8.4.1 Virtual address space

Each program has its own virtual address space, which is a set of addresses that programs use

for load and store operations.
8.4.2 Physical address space

The physical address space is a set of addresses used to reference locations in the main
memory.

The terms virtual address and the physical (or real, used synonymously) address are used
to describe addresses in the virtual address space and the physical address space.

The arrangement of virtual memory is shown in Figure 8.4.1

A page, memory page, or virtual page is a fixed-length contiguous block of virtual memory,
described by a single entry in the page table. Similarly, a page frame is the smallest fixed-
length contiguous block of physica memory into which memory pages are mapped by the
operating system. Paging uses fixed size pages to move between main memory and secondary
storage. Paging uses page tables to map the logical addresses to physical addresses.

Virtua memory gives the illusion that the main memory is much larger than it actualy is.
When a program references a virtual address, it cannot tell whether the virtual address was
resident in the main memory of the computer or whether it had to be fetched from the

magnetic memory.

138

Virtual Memory

For example, the user might try to load their email in their browser window while also
running a word processing software, a shift scheduling software and a content management
system at the sametime.

85 MEMORY MANAGEMENT
Virtua memory is a feature of an operating system that enables a computer to be able to

compensate shortages of physical memory by transferring pages of data from random access
memory to disk storage. .This process allows for RAM to be freed up so that a computer can
compl ete the task.

Various models are used for memory management for allocating pages to processes. The two
policies in use are for allocating pages to active processes: fixed and variable partitioning

policies are used to manage the allocation of memory pages.

In fixed allocation policy, the partition of memory allocated process is fixed for the life-time
of the process. In the variable alocation policy, the partition varies dynamically during the
lifetime of the process and the requirements of the process. Various paging algorithms are

used for fixed and variable management policies.

There are some common policies used for page-replacement memory policies for fixed-space

schemes:
1. Least recently used (LRU)

In case of page fault, this algorithm replaces the page in Z(t) with the largest backward
distance:

139

Q(2) =y if and only if bi(y) = max [b;i(x)]
2. Least frequently used (LFU)
This algorithm replaces the page in Z(t) that has been referenced the least number of

Demand Paging is a popular method of virtual memory management. In demand paging, the
pages of a process which are least used, get stored in the secondary memory.

A page is copied to the main memory when its demand is made or page fault occurs. There
are various page replacement algorithms which are used to determine the pages which will be

replaced. We will discuss each one of them later in detail.

times.
1. First-in first-out (FIFO)

This algorithm replaces the page in Z(t) that has been in memory for the longest time.
2. Last-in first-out (LIFO)

This algorithm replaces the page in Z(t) that has been in memory for the shortest time.
3. Random (RAND)

This algorithm chooses a page in Z(t) at random for replacement.

LRU isthe most popular algorithm. A dynamic list, known as a LRU stack islinked with it.
This stack arranges the referenced pages from top to bottom by decreasing order of frequency
of reference. At the page replacement time, LRU policy chooses the lowest ranked page in
the stack.

Advantages of Virtua Memory
1. Thedegree of Multiprogramming will be increased.
2. User can run large application with less real RAM.
3. Thereisno need to buy more memory RAMSs.
Disadvantages of Virtua Memory

1. The system becomes slower since swapping takes time.

140

2. It takes more time in switching between applications.
3. Theuser will have the lesser hard disk space for its use.

8.6 SUMMARY

Memory of a computer system is a hierarchy of memory of various technologies which are
organized to provide best performance in terms of speed and cost. The characteristics of
memory, which are access time and accessing methods are used as benchmarks for
constructing primary memory, secondary memory and cache memory. The various kinds of
memory devices are used according to their storage capacity and acceptable level of
performance. In Random-Access-Memories, it takes the same amount of time to access any
storage location, and they can be accessed in any order. The SRAM retains its state as long as
power is applied to it. The charge in the capacitor of a DRAM cell is maintained for tens of

milliseconds. In serial access memories, access mechanism is shared by the storage locations.

141

