A,

| = |

Urrg ree Gus gateafret
ufena

JAGAT GURU NANAK DEV
PUNJAB STATE OPEN UNIVERSITY, PATIALA

(Established by Act No. 19 of 2019 of the L egidature of State of Punjab)

The Motto of the University
(SEWA)

SKILL ENHANCEMENT EMPLOYABILITY WISDOM ACCESSIBILITY

= e T\»{-_ov ¢ e

5 o
N BYY e w .‘
R A OFY
PUALAS STRT PROT, PATALA

--&J

— —————

Bachelor of Computer Applications (BCA)
Course Name: Object Oriented Programming
Course Code: BCA-4-03T

ADDRESS: C/28, THE LOWER MALL, PATIALA-147001
WEBSITE: www.psou.ac.in

SELF-INSTRUCTIONAL

éﬁr’% JAGAT GURU NANAK DEV

- - ~PUNJAB STATE OPEN UNIVERSITY PATIALA
(Established by Act No.19 of 2019 of L egislature of the State of Punjab)

i B e

PROGRAMME COORDINATOR:

Dr. Monika Pathak

Assistant Professor, School of Sciences and Emerging Technologies
Jagat Guru Nanak Dev Punjab State Open University, Patiala

PROGRAMME CO-COORDINATOR :

Dr. Gaurav Dhiman

Assistant Professor, School of Sciences and Emerging Technologies
Jagat Guru Nanak Dev Punjab State Open University, Patiala

COURSE COORDINATOR::

Dr. Karan Sukhija

Assistant Professor, School of Sciences and Emerging Technologies
JGND PSOU, Patida

ﬁ*‘?ﬁ% JAGAT GURU NANAK DEV

-~ PUNJAB STATE OPEN UNIVERSITY PATIALA
(Established by Act No.19 of 2019 of L egislature of the State of Punjab)

i B e
ufeEmmar

PREFACE

Jagat Guru Nanak Dev Punjab State Open University, Patiala was established in
Decembas 2019 by Act 19 of the Legislature of State of Punjab. It is the first and only Open
Universit of the State, entrusted with the responsibility of making higher education accessible
to all especially to those sections of society who do not have the means, time or opportunity
to pursue regular education.

In keeping with the nature of an Open University, this University provides a flexible
education system to suit every need. The time given to complete a programme is double the
duration of a regular mode programme. Well-designed study material has been prepared in
consultation with expertsin their respective fields.

The University offers programmes which have been designed to provide relevant,
skill-based and employability-enhancing education. The study material provided in this
booklet is self instructional, with self-assessment exercises, and recommendations for further

readings. The syllabus has been divided in sections, and provided as units for simplification.

The Learner Support Centres/Study Centres are located in the Government and
Government aided colleges of Punjab, to enable students to make use of reading facilities,
and for curriculum-based counselling and practicals. We, at the University, welcome you to
be apart of thisinstitution of knowledge.

Prof. G. S. Batra,
Dean Academic Affairs

BCA-4-03T: Object Oriented Programming

Total Marks. 100
External Marks: 70
Internal Marks: 30

Credits: 4
Pass Percentage: 40%

INSTRUCTIONS FOR THE PAPER SETTER/EXAMINER

1
2.

4.

5.

The syllabus prescribed should be strictly adhered to.

The question paper will consist of three sections: A, B, and C. Sections A and B will
have four questions from the respective sections of the syllabus and will carry 10
marks each. The candidates will attempt two questions from each section.

Section C will have fifteen short answer questions covering the entire syllabus. Each
guestion will carry 3 marks. Candidates will attempt any ten questions from this
section.

The examiner shall give a clear instruction to the candidates to attempt questions only
at one place and only once. Second or subsequent attempts, unless the earlier ones
have been crossed out, shall not be eval uated.

The duration of each paper will be three hours.

INSTRUCTIONS FOR THE CANDIDATES

Candidates are required to attempt any two questions each from the sections A and B of the
guestion paper and any ten short questions from Section C. They have to attempt questions
only at one place and only once. Second or subsequent attempts, unless the earlier ones have
been crossed out, shall not be evaluated.

Course: Object Oriented Programming

Course Code: BCA-4-03T

Course Outcomes (COs)
After the completion of this course, the students will be able to:

CO1 | Develop understanding of writing object-oriented programs that combine functions
and data.

CO2 | Gain a thorough understanding of the core principles of OOP, including
encapsulation, inheritance, and polymorphism.

CO3 | Learn how to apply OOP concepts to solve programming problems, design software
systems, and devel op reusable code.

CO4 | Understand how to create classes and objects in a programming language that
supports OOP

CO5 |Learn how to use inheritance to create hierarchies of classes and reuse code

efficiently.

Detailed Contents:

Module | Module Name | Module Contents
Section-A
Modulel Introduction to OOP Introduction to OOP:

o Basic concepts (objects, classes,
inheritance, polymorphism,
encapsul ation)

e Advantages of OOP over procedural
programming

Classes and Objects:

o Declaring classes

o Creating objects

e Access specifiers (public, private,
protected)

o Constructors and destructors

o Static members

Modulell | Inheritance and Inheritance:
Polymor phism e Baseand derived classes

o Typesof inheritance (single, multiple,
multilevel, hierarchical)

e Access control in inheritance

Polymor phism:

« Function overloading

e Operator overloading

e Virtua functions and runtime
polymorphism

e Abstract classes and pure virtual
functions

Section-B
Modulelll | Encapsulation and Encapsulation:
Interfaces and Abstract o Datahiding
Classes e Accessor and mutator methods
o Benefits of encapsulation
Interfaces and Abstract Classes:

e Declaring interfaces

e Implementing interfaces

o Abstract classes and methods

ModulelV | Exception Handling and Exception Handling:

File Handling

e Handling exceptions using try-catch
blocks

e Throwing exceptions

e Custom exceptions

File Handling:

e Reading from and writing to files

e File streams (File Input Stream, File
Output Stream, etc.)

Reference Books:

e Herbert Schildt, “The Complete Reference C++”, Tata McGraw-Hill.

e Deiteland Deitel, “C++ How to Program”, Pearson Education.

e Robert Lafore, “Object Oriented Programming in C++”, Galgotia Publications.

e Bjarne Strautrup, “The C++ Programming Language”, Addition-Wesley
Publication Co.

e Stanley B. Lippman, Josee Lajoie, “C++ Primer”, Pearson Education.

E. Balagurusamy, “Object Oriented Programming with C++”, Tata McGraw-Hill

Section A

Modulel

Introduction to OOP:
OOP stands for Object-Oriented Programming. Object-Oriented Programming & System

(OOPS) concepts in Java helps reduce code complexity and enables the reusability of code.
Programmers feel like working with real-life entities or objects. Object-oriented
programming is a programming paradigm that brings together data and methods in a single
entity called object. This promotes greater understanding as well as flexibility and
maintenance of code over a long period of time. The basic concepts about oops in java are
given below:

Basic Concepts of oops:

Objects & Classes:
Objects are the basic unit of OOPS representing real-life entities. They are invoked with the

help of methods. These methods are declared within a class. Usually, anew keyword is used
to create an object of aclassin Java. Classis a predefined or user-defined template from
which objects are created. It represents properties/methods that are common to all objects of
the same class. It has several features, such as access modifiers, class names, interfaces, and
class bodies.

Abstraction
Abstraction means showing only the relevant details to the end-user and hiding the irrelevant

features that serve as a distraction. For example, during an ATM operation, we only answer a
series of questions to process the transaction without any knowledge about what happens in
the background between the bank and the ATM.

Example Program of Abstraction in Java
abstract class Bike

Bike()
{

}
abstract void drive();
void weight()

System.out.printIn("The Street Bob. ");

System.out.printin("Light on its feet with a hefty : 630 |bs.");

}
}

class HarleyDavidson extends Bike

void drive()
{
System.out.printIn("Old-school yet relevant.”);
}
}
public class Abstraction
{
public static void main (String argy[])
{
Bike obj = new HarleyDavidson();
obj.drive();
obj. weight();
}
}
Output:
The Street Bob.

Old-school yet relevant.
Light on its feet with a hefty: 630 Ibs.

3. Encapsulation
Encapsulation is a means of binding data variables and methods together in a class. Only

objects of the class can then be alowed to access these entities. This is known as data hiding
and helps in the insulation of data.

Example Program of Encapsulation in Java
class Encapsulate
{

private String Name;

private int Height;

private int Weight;

public int getHeight()

{

return Height;

}
public String getName()

{

return Name;

}
public int getWeight()

{
return Weight;

}

public void setWeight(int newWeight)

{
Weight = newWeight;

}
public void setName(String newName)

{

Name = newName;

public void setHeight(int newHeight)
{

Height = newHeight;
}

}
public class TestEncapsulation

{
public static void main (String[] args)

{
Encapsulate obj = new Encapsulate ();

obj.setName("Abi");

obj.setWeight(70);

obj.setHeight(178);

System.out.printin(*"My name: " + obj.getName());

System.out.printin("My height: " + obj.getWeight());

System.out.printin("My weight " + obj.getHeight());
}

}
Output:

My name: Abi
My height: 70
My weight: 178
4. Inheritance— Single, Multilevel, Hierarchical, and Multiple
Inheritance is the process by which one class inherits the functions and properties of another

class. The main function of inheritance is the reusability of code. Each subclass only has to
defineits features. The rest of the features can be derived directly from the parent class.
Single Inheritance— Refers to a parent-child relationship where a child class extends the
parent class features. Class Y extends Class X.

Multilevel Inheritance — Refers to a parent-child relationship where a child class extends
another child’s class. Class Y extends Class X. Class Z extends Class Y.

Hierarchical Inheritance— This refers to a parent-child relationship where severa child
classes extend one class. Class Y extends Class X, and Class Z extends Class X.

Multiple Inheritance— Refers to a parent-child relationship where one child class is
extending from two or more parent classes. JAVA does not support this inheritance.

Example Program of Inheritancein Java

class Animal
{
void habit()
{
System.out.printin("l am nocturnal!! *);
}

class Mammal extends Animal

{
void nature()
{
System.out.printin("l hang upside down!! ");
}
}
class Bat extends Mammal
void hobby()
System.out.printin("l fly I);
}
}
public class Inheritance
{
public static void main(String argg[])
{
Bat b = new Bat();
b.habit();
b.nature();
b.hobby();
}
}
Output:
| am nocturnal!!
| hang upside down!!
| fly Il

5. Polymor phism — Static and Dynamic
It is an object-oriented approach that allows the developer to assign and perform severa

actions using a single function. For example, “+” can be used for addition as well as string
concatenation. Static Polymorphism is based on Method Overloading, and Dynamic
Polymorphism is based on Method Overriding.

Example Program of Static Polymor phism with Method Overloading
Method Overloading

class CubeArea
{
double area(int x)
{
return 6 * x * x;
}
}
class SphereArea
double area(int x)

return4* 3.14* x * Xx;
}

class CylinderArea

double area(int X, int y)

{
return X * y;
}
}
public class Overloading
{
public static void main(String []args)
{
CubeArea ca= new CubeArea();
SphereArea sa = new SphereArea();
CylinderArea cia= new CylinderArea();
System.out.printIn(" Surface area of cube ="+ caarea(1));
System.out.printin(" Surface area of sphere= "+ sa.area(2));
System.out.printin(" Surface area of cylinder= "+ cia.area(3,4));
}
}
Output:
Surface area of cube =6.0
Surface area of sphere=50.24

Surface area of cylinder=12.0

Example Program of Dynamic Polymor phism with Method Overriding
class Shape

void draw()

{
System.out.printin("Y our favorite shape'");

}
void numberOfSides()

{

}
}

class Square extends Shape

{

void draw()

{
System.out.printin(" SQUARE ");

}
void numberOf Sides()

{
System.out.printin("side=4");
}
}

System.out.printin("side = 0");

class Pentagon extends Shape

{
void draw()
{
System.out.printin("PENTAGON ");
}
void numberOf Sides()
{
System.out.printin("side= 5");
}
}
class Hexagon extends Shape
{
void draw()
{
System.out.printin("HEXAGON ");
}
void numberOf Sides()
{
System.out.printin("side=6");
}
}
public class Overriding
{
public static void main(String []args)
{
Square s = new Square();
s.draw();
s.numberOfSides();
Pentagon p = new Pentagon();
p.draw();
p.numberOfSides();
Hexagon h = new Hexagon();
h.draw();
h.numberOfSides();
}
}
Output:
SQUARE;
side=4;
PENTAGON;
side=5
HEXAGON
side=6

Advantages of OOP over procedural programming
Procedura programming is about writing procedures or methods that perform operations on

the data, while object-oriented programming is about creating objects that contain both data

and methods. Object-oriented programming has several advantages over procedural

programming:

e OOP is faster and easier to execute
e OOP provides a clear structure for the programs

e OOP helps to keep the Java code DRY "Don't Repeat Yourself", and makes the code
easier to maintain, modify and debug

e OOP makes it possible to create full reusable applications with less code and shorter
development time.

Classes and Objects:

Java is an object-oriented programming language. Everything in Java is associated with
classes and objects, along with its attributes and methods. For example: inreal life, acar isan
object. The car has attributes, such as weight and color, and methods, such as drive and
brake. A Classislike an object constructor, or a"blueprint" for creating objects.

Java Classes
A class in Java is a set of objects which shares common characteristics/ behavior and

common propertied attributes. It is a user-defined blueprint or prototype from which objects
are created. For example, Student is a class while a particular student named Ravi is an
object.

Properties of Java Classes
1. Classisnot areal-world entity. It isjust atemplate or blueprint or prototype from
which objects are created.

2. Class does not occupy memory.
3. Classisagroup of variables of different datatypes and a group of methods.
4. A Classin Javacan contain:

o Datamember

e Method

» Constructor

e Nested Class

e Interface

Class Declaration in Java:
access modifier class <class_name>
{

data member;

method;

constructor;

nested class;

interface;

}
Example:
/I Java Program for class example
class Student
{
[/l data member (also instance variable)
intid;
[/l data member (also instance variable)
String name;
public static void main(String args[])
{
/I creating an object of
I/ Student
Student s1 = new Student();
System.out.printin(sl.id);
System.out.printIn(sl.name);
}
}

Components of Java Classes
In general, class declarations can include these components, in order:
1. Maodifiers: A class can be public or has default access (Refer this for details).

2. Classkeyword: class keyword is used to create a class.
3. Classname: The name should begin with aninitial letter (capitalized by convention).
4

. Superclass (if any): The name of the class’s parent (superclass), if any, preceded by
the keyword extends. A class can only extend (subclass) one parent.

5. Interfaces (if any): A comma-separated list of interfaces implemented by the class, if
any, preceded by the keyword implements. A class can implement more than one
interface.

6. Body: The class body is surrounded by braces, {}.

Java Objects
An object in Java is a basic unit of Object-Oriented Programming and represents real-life

entities. Objects are the instances of a class that are created to use the attributes and methods
of aclass. A typical Java program creates many objects, which as you know, interact by
invoking methods. An object consists of:

1. State Itisrepresented by attributes of an object. It also reflects the properties of an
object.

2. Behavior: It isrepresented by the methods of an object. It also reflects the response of
an object with other objects.

3. ldentity: It gives a unigue name to an object and enables one object to interact with
other objects.

Example of an object: dog

y State/attributes Behay o
Idontity Breed Beark

Marme of Dog Age Sloep
Cirlonr Eat

I
e

Objects correspond to things found in the real world. For example, a graphics program may
have objects such as “circle”, “square”, and “menu”. An online shopping system might

have objects such as “shopping cart”, “customer”, and “product”.

Creating Objects
When an object of aclassis created, the classis said to be instantiated. All the instances

share the attributes and the behavior of the class. But the values of those attributes, i.e. the
state are unique for each object. A single class may have any number of instances.

Example:

Class Dog

State/Attributes

Dogl |— E';':l" e 3 Dog 3
Color —_—

Beohaviors ———-——

Hark
Cog 2 —_— Sleep -i——--. Daog & |
Eat e

As we declare variables like (type name;). This notifies the compiler that we will use the
name to refer to data whose type is type. With a primitive variable, this declaration also
reserves the proper amount of memory for the variable. So for reference variables , the type
must be strictly a concrete class name. In general, we can’t create objects of an abstract class
or an interface.
Syntax: Dog tuffy;

If we declare areference variable(tuffy) like this, its value will be undetermined(null) until an
object is actually created and assigned to it. Simply declaring a reference variable does not
create an object.

Initializing a Java obj ect
The new operator instantiates a class by allocating memory for a new object and returning a

reference to that memory. The new operator also invokes the class constructor.

Example:
/I Class Declaration

public class Dog
{
Il Instance Variables
String name;
String breed;
int age;
String color;
/I Constructor Declaration of Class
public Dog (String name, String breed, int age, String color)
{
this.name = name;
this.breed = breed;
this.age = age;
this.color = color;
}
// method 1
public String getName() { return name; }
// method 2
public String getBreed() { return breed; }
// method 3
public int getAge() { return age; }
// method 4
public String getColor() { return color; }
@Override public String toString()
{
return ("Hi my nameis" + this.getName()
+"\nMy breed,age and color are"
+ this.getBreed() + "," + this.getAge()
+"" + this.getColor());
}
public static void main(String[] args)
{
Dog tuffy
= new Dog("tuffy", "papillon", 5, "white");
System.out.printIn(tuffy.toString());
}

}
Output:

Hi my name istuffy.
My breed,age and color are papillon,5,white

Waysto Create an Object of a Class
There are four ways to create objects in Java. Strictly speaking, there is only one way (by

using a new keyword), and the rest internally use a new keyword.

i. Using new keyword
It is the most common and general way to create an object in Java.
Example:
/I creating object of class Test
Testt = new Test();

ii. Using Class.forName (String className) method
There is a pre-defined class in javalang package with name Class. The forName(String

className) method returns the Class object associated with the class with the given string
name. We have to give a fully qualified name for a class. On calling the new Instance()
method on this Class object returns a new instance of the class with the given string name.

/I creating object of public class Test
/I consider class Test present in com.pl package
Test obj = (Test)Class.forName("com.pl.Test").newlInstance();

iii. Using clone() method
clone() method is present in the Object class. It creates and returns a copy of the object.
/I creating object of class Test
Test t1 = new Test();
/I creating clone of above object
Test t2 = (Test)t1.clone();

Access Specifier in Java
In Java, Access modifiers help to restrict the scope of a class, constructor, variable, method,

or data member. It provides security, accessibility, etc to the user depending upon the access
modifier used with the element. Let us learn about Java Access Modifiers, their types, and the
uses of access modifiersin thisarticle.

Typesof Access Modifiersin Java
There are four types of access modifiers available in Java:
1. Default — No keyword required

2. Private
3. Protected
4. Public

1. Default Access Modifier

When no access modifier is specified for a class, method, or data member — It is said to be
having the default access modifier by default. The data members, classes, or methods that are
not declared using any access modifiers i.e. having default access modifiers are accessible
only within the same package. In this example, we will create two packages and the classesin
the packages will be having the default access modifiers and we will try to access a class
from one package from a class of the second package.

Il Java program to illustrate default modifier
package p1,;
/I Class Geek is having Default access modifier

class Geek

{
void display()

{
System.out.printin("Hello World!");

}
}

2. Private Access M odifier
The private access modifier is specified using the keyword private. The methods or data

members declared as private are accessible only within the class in which they are declared.
Any other class of the same package will not be able to access these members. Top-level
classes or interfaces cannot be declared as private because private means “only visible within
the enclosing class”. protected means “only visible within the enclosing class and any
subclasses”, Hence these modifiers in terms of application to classes, apply only to nested
classes and not on top-level classes. In this example, we will create two classes A and B
within the same package pl. We will declare a method in class A as private and try to access
this method from class B and see the result.

/I Java program to illustrate error while
/I Using class from different package with
/Il Private Modifier

package p1;
/Il Class A
classA
{
private void display()
{
System.out.printIn(" GeeksforGeeks");
}
}
// Class B
classB
{
public static void main(String argg[])
{
A obj = new A();
/I Trying to access private method of another class
obj.display();
}
}
Output:
error: display() has private accessin A
obj.display();

3. Protected Access M odifier

The protected access modifier is specified using the keyword protected. The methods or data
members declared as protected are accessible within the same package or subclasses in
different packages. In this example, we will create two packages p1 and p2. Class A in plis
made public, to access it in p2. The method display in class A is protected and class B is
inherited from class A and this protected method is then accessed by creating an object of
classB.

Example:

/I Java Program to Illustrate
Il Protected Modifier
package p1;

/I Class A

public class A

{
protected void display()

{

}
}

System.out.printIn(" GeeksforGeeks");

4 Public Access modifier:

The public access modifier is specified using the keyword public. The public access modifier
has the widest scope among all other access modifiers. Classes, methods, or data members
that are declared as public are accessible from everywhere in the program. There is no
restriction on the scope of public data members.

Example:

Il Java program to illustrate
// public modifier

package p1;

public class A

{
public void display()
{

System.out.println(" GeeksforGeeks");

}
}

Constructor and Destructor in Java

In Java, a constructor is a particular method that initializes an object when it isfirst formed. It
guarantees that the item begins its trip with predetermined values and configurations.
Consider it a blueprint for the object, outlining how it should be initialized. In Java,

constructors have the same name as the class they belong to. They have no return type, not

even void, which distinguishes them from conventional methods. When you build an instance
of aclass using the 'new' keyword, the constructor is automatically invoked, setting the stage

for the object to perform its duties.

Syntax:

public class Car

{
/I Constructor
public Car()
{

/I Initialization logic goes here

}

}

Constructors exist in a variety of types, parameterized constructors enable you to supply data
during object formation, whilst default constructors are used when there is no explicit
constructor declared. Unlike several programming languages, Java does not have explicit
destructors. Instead, it depends on the garbage collector to automaticaly reclam memory
used by things that are no longer in use. This technique, referred to as garbage collection,
relieves the programmer of manual memory management duties.

Java doesn't offer a traditional destructor, developers can implement the finalize() method.
However, it's essential to note that relying solely on finalize() for cleanup is not
recommended due to its unpredictable nature.

public class Car

{

// Finalize method for cleanup
@Override
protected void finalize() throws Throwable {
/I Cleanup logic goes here
super.finaize();
}
}

To summarise, constructors give life to Java objects by purposefully initialisng them,
whereas destructors, or their substitutes, provide a graceful farewell when an object's trip is
over. The ability to generate and deconstruct objects is critical for developing strong and

efficient Java programs.

Static membersin Java
The static keyword in Java is mainly used for memory management. The static keyword in

Javais used to share the same variable or method of a given class. The users can apply static

keywords with variables, methods, blocks, and nested classes. The static keyword belongs to

the class than an instance of the class. The static keyword is used for a constant variable or a
method that is the same for every instance of aclass.

The static keyword is a non-access modifier in Javathat is applicable for the following:

o Blocks

e Variables
e Methods
o Classes

Note: To create a static member (block, variable, method, nested class), precede its
declaration with the keyword static.

Characteristics of static keyword:

Shared memory allocation: Static variables and methods are alocated memory space only

once during the execution of the program. This memory space is shared among al instances
of the class, which makes static members useful for maintaining globa state or shared
functionality.

Accessible without object instantiation: Static members can be accessed without the need to
create an instance of the class. This makes them useful for providing utility functions and
constants that can be used across the entire program.

Associated with class, not objects: Static members are associated with the class, not with
individual objects. This means that changes to a static member are reflected in all instances of
the class, and that you can access static members using the class name rather than an object
reference. Cannot access non-static members. Static methods and variables cannot access
non-static members of a class, as they are not associated with any particular instance of the
class. Can be overloaded, but not overridden: Static methods can be overloaded, which means
that you can define multiple methods with the same name but different parameters. However,
they cannot be overridden, as they are associated with the class rather than with a particular
instance of the class.

When a member is declared static, it can be accessed before any objects of its class are
created, and without reference to any object. For example, in the below java program, we are
accessing static method ml() without creating any object of the Test class.

/I Java program to demonstrate that a static member
/I can be accessed before instantiating a class
class Test
{
/I stetic method
static void ml()
{

System.out.printin("from m1");

}
public static void main(String[] args)

/I calling m1 without creating
/[any object of class Test
m1();

Output:
from m1

Modulell

Inheritance
Java, Inheritance is an important pillar of OOP(Object-Oriented Programming).

It is the mechanism in Java by which one class is allowed to inherit the features

(fields and methods) of another class. In Java, Inheritance means creating new

classes based on existing ones. A class that inherits from another class can reuse
the methods and fields of that class. In addition, you can add new fields and

methods to your current class as well.

Why Do We Need Java | nheritance?

Code Reusability: The code written in the Superclass is common to all

subclasses. Child classes can directly use the parent class code.

Method Overriding: Method Overriding is achievable only through
Inheritance. It is one of the ways by which Java achieves Run Time

Polymorphism.

Abstraction: The concept of abstract where we do not have to provide all
details is achieved through inheritance. Abstraction only shows the

functionality to the user.

Base and Derive Classin Java I nheritance

Class: Class is a set of objects which shares common characteristics/
behavior and common properties/ attributes. Class is not a real-world
entity. It is just a template or blueprint or prototype from which objects
are created.

Super Class/Parent Class: The class whose features are inherited is
known as a superclass (or abase class or a parent class).

Sub Class/Child Class. The class that inherits the other class is known
as a subclass (or a derived class, extended class, or child class). The

subclass can add its own fields and methods in addition to the superclass
fields and methods.

« Reusability: Inheritance supports the concept of “reusability”, i.c. when
we want to create a new class and there is already a class that includes
some of the code that we want, we can derive our new class from the
existing class. By doing this, we are reusing the fields and methods of the

existing class.

How to Use Inheritancein Java?
The extends keyword is used for inheritance in Java. Using the extends
keyword indicates you are derived from an existing class. In other words,

“extends” refers to increased functionality.

Syntax:
class DerivedClass extends BaseClass

{
/Imethods and fields

}

Inheritance is one of the key features of OOP that allows us to create a new
class from an existing class. The new class that is created is known
as subclass (child or derived class) and the existing class from where the child
class is derived is known assuperclass(parent or base class).
The extends keyword is used to perform inheritance in Java.

For example:

class Animal

{
}

/I methods and fields

Il use of extends keyword
/ to perform inheritance

class Dog extends Animal

{
/I methods and fields of Animal

I/l methods and fields of Dog
}

In the above example, the Dog class is created by inheriting the methods and
fields from the Animal class. Here, Dogis the subclass and Animal is the

superclass.

Example 1. Java Inheritance

class Animal
{
/ field and method of the parent class
String name;
public void eat()
{

System.out.printin("l can eat");

}
}

/l inherit from Animal
class Dog extends Animal

{ I/l new method in subclass

public void display()

{ System.out.printin("My nameis" + name);
} }
{class Main

public static void main(String[] args)

{
/[create an object of the subclass
Dog labrador = new Dog();
Il access field of superclass
|abrador.name = "Rohu";
labrador.display();

/Il call method of superclass
/l using object of subclass
|abrador.eat();

Output:
My name is Rohu
| can eat

Typesof Inheritancein Java

Have you ever wondered about the ways in which Java alows for code reusability and
hierarchical organization through inheritance? Java supports several types of inheritance:
single inheritance through class extension, multilevel inheritance to create a chain of class
relationships, hierarchical inheritance for multiple classes to share a single superclass, and
multiple inheritance through interfaces for a class to adopt methods from multiple sources.
Hybrid inheritance combines these approaches, offering flexibility in complex software

design. The following sections elaborate the types of reusability support by java.

o Single-level inheritance
e Multi-level Inheritance

e Hierarchical Inheritance
e Multiple Inheritance

e Hybrid Inheritance

NOTE: Java does not support Multiple Inheritance and Hybrid Inheritance directly through
classes due to its language design, it facilitates aspects of these inheritance types using

interfaces and other mechanisms.

Single Inheritance

In this type of javainheritance, the class inherits the properties of some other class. It allows
derived classes to take properties and behavior from a single-parent class. In turn, this will
make it possible to reuse current code and give it new functionalities. Here, Class A serves as

the parent class, while Class B, the child class, inherits the traits and characteristics of the

parent class. The following code shows a comparable idea:

class Animal
{
void eat()
{
System.out.println(“eating”);
}
}
class Dog extends Animal
{
void bark()
{
System.out.println(“barking”);
}
}
class TestInheritance
{
public static void main(String argg[])
{
Dog d=new Dog();
d.bark();
d.eat();
}

Multi-L evel Inheritance

Multi-level type of java inheritance comes with a chain of inheritance. This indicates that we

feature a parent class which a derived class inherits. The derived class then serves as the

parent to the next class, and so forth. There is a dog class descended from the Animal class,

sticking with the Animal class example from below. Another great option is the puppy class —

ayoung dog descended from the Dog class. Thisway, you can possess atiered inheritance.

class Animal

{
void eat()
{
System.out.println(“eating...”);
}
}
class Dog extends Animal
{
void bark()
{
System.out.println(“barking...”);
}
}
class Puppy extends Dog
{
void weep()
{
System.out.println(“weeping...”);
}
}
class TestInheritance?
{
public static void main(String args[])
{
Puppy d=new Puppy();
d.weep();
d.bark();
d.eat();
}

Multiple Inheritances
The concept of inheritance, which enables classes to adopt features and attributes from other
classes, is fundamental to object-oriented programming. Due to Javas support for single
inheritance, a class can only descend from one superclass. However, Java offers a method for
achieving multiple inheritances through interfaces, enabling a class to implement many
interfaces. We will examine the idea of multiple inheritance in Java, how it is implemented
using interfaces, and use examples to help us understand.
Understanding Multiple Inheritance A class's capacity to inherit traits from several classesis
referred to as multiple inheritances. This notion may be quite helpful when a class needs
features from many sources. Multiple inheritances, however, can result in issues like the
diamond problem, which occurs when two superclasses share the same method or field and
causes conflicts. Java uses interfaces to implement multiple inheritances in order to prevent
these conflicts.
Javainterfaces
A Java interface is a group of abstract methods that specify the behavior that implementing
classes must follow. It serves as a class blueprint by outlining each class's methods. Interfaces
offer a degree of abstraction for specifying behaviors but cannot be instantiated like classes.
In Java, a class can successfully implement several interfaces to achieve multiple inheritance.
Syntax of implementing multiple interfaces:

class MyClass implements Interfacel, Interface2, Interface3

{
/I class body

The classes "MyClass' and "Interfacel”, "Interface2”, and "Interface3" can now inherit and
implement methods from other interfaces. As a result, the class is able to display the

behaviours specified in every interface it implements.
Example- 1

Let's look at an example situation to demonstrate multiple inheritance using Java interfaces.
Imagine that you and | are creating a game with a variety of characters, such as warriors and
magicians. We also carry a variety of weaponry, including swords and wands. Although we
want to keep character kinds and weapon types apart, we also want our characters to be able

to utilize weapons. The following is how multiple inheritances through interfaces may help us

dothis:

interface Character
{
void attack();
}
interface Weapon
{
void use();
}
class Warrior implements Character, Weapon
{
public void attack()
{
System.out.printin("Warrior attacks with asword.");
}
public void use()
{
System.out.printin("Warrior uses a sword.");
}
}
class Mage implements Character, Weapon
{
public void attack()
{
System.out.printIn("Mage attacks with awand.");
}
public void use()
{
System.out.printin("Mage uses awand.");
}
}

public class Multiplelnheritance

{

public static void main(String[] args)

{
Warrior warrior = new Warrior();
Mage mage = new Mage();
warrior.attack(); // Output: Warrior attacks with a sword.
warrior.use(); // Output: Warrior uses a sword.
mage.attack(); // Output: Mage attacks with awand.
mage.use(); // Output: Mage uses awand.
}
}
Output:

Warrior attacks with a sword.
Warrior uses a sword.

Mage attacks with a wand.
Mage uses awand.

Explanation: The interfaces "Character" and "Weapon" in the example above specify the
behaviour that classes that implement them must have. As a result of the classes "Warrior"
and "Mage" implementing both interfaces, the necessary behaviors may be inherited and
shown. The main method shows how to instantiate these classes' objects and call their

corresponding behaviors.
Hierarchical Inheritance

This type of java inheritance is where many subclasses inherit from one single class.
Basically it is a combination of more than one type of javainheritance. When a class contains
severa child classes or subclasses, or, to put it another way, when multiple child classes share

the same parent class, this type of inheritance is referred to as hierarchical.

class Animal

{
void eat()
{

System.out.println(“eating...”);

}

class Dog extends Animal

{
void bark()
{
System.out.println(“barking...”);
}
}
class Cat extends Animal
{
void meow()
{
System.out.println(“meowing...”);
}
}
class TestInheritance3
{
public static void main(String argg[])
{
Cat c=new Cat();
c.meow();
c.eat();
}
}

Hybrid Inheritance

Hybrid type of java inheritance is a combination of more than two types of java inheritances
single and multiple. A hybrid inheritance combines a single or more of the inheritance types
we’ve covered so far. Any combination, though, leads to a form of multiple inheritances that

Java does not support.

Hybrid Inheritance Example:

Class A and B extends class C — Hierarchical inheritance

Class D extends class A — Single inheritance

classC

{
public void disp()

{
System.out.printIn("C");

class A extends C

{
public void disp()
{
System.out.printin("A");
}
}

class B extends C

{
public void disp()
{
System.out.printin("B");
}
}

class D extends A

{
public void disp()
{
System.out.printin("D");
}

public static void main(String args[]){

D obj = new D();
obyj.disp();

Output: D

Access control in inheritance

Java provides arich set of modifiers. They are used to control access mechanisms and also

provide information about class functionalities to VM. They are divided into two categories

namely:

Access modifiers

Non-access modifiers

Java’s access modifiers are public, private, and protected. Java also defines a default access

level (called package-private).

public: When a member of a class is modified by public, then that member can be
accessed by any other code.

private: When a member of a class is specified as private, then that member can only
be accessed by other members of its class.

default: It is also referred to as no modifier. Whenever we do not use any access
modifier it is treated as default where this allows us to access within a class, within a
subclass, and also non-sun class within a package but when the package differs now
be it a subclass or non-class we are not able to access.

protected: With the above default keyword we were facing an issue as we are
getting closer to the real world with the above default modifier but there was a
constriction as we are not able to access class sub-class from a different package. So
protected access modifier allows not only to access class be it subclass or non-sub
class but allows us to access subclass of the different package which brings us very
close to a real-world and hence strong understanding of inheritance is required for

understanding and implementing this keyword.

The following table elaborate the detail s about access modifiers provided.

e ——lt L e

same ¢lass Wi i
same package subelass ey ha Yes e
sammie packoge non-sulbclass s na ¥a5 yEE
different package subelass na na YRS W
different package non-subelsss Ao na no YES

Note: Now you can understand why main() has always been preceded by the public
modifier. It is called by code that is outside the program—that is, by the Java run-time
system. When no access modifier is used, then by default the member of a class is public
within its own package, but cannot be accessed outside of its package. protected applies only

when inheritance is involved.

Polymor phism
Polymorphism is derived from two Greek words, “poly” and “morph”, which mean “many”

and “forms”, respectively. Hence, polymorphism meaning in Java refers to the ability of
objects to take on many forms. In other words, it alows different objects to respond to the
same message or method call in multiple ways.

Polymorphism in Java Example

As previously explained, polymorphism in Java hel ps an object take on many different forms.
In this section, we will provide different examples of polymorphism to show how it works.
The Animal class has a makeSound() method that outputs “Animal making a sound...” while
the subclasses Dog, Cat, and Elephant, each provide their own implementation of the same
function to produce individual noises.

class Anima

{
void makeSound()

System.out.printIn(" Animal making a sound...");

}
}

class Dog extends Animal

{

void makeSound() {
System.out.printin("Dog barking...");

}
}
class Cat extends Animal
{
void makeSound()
{
System.out.printin("Cat meowing...");
}
}
class Elephant extends Animal
{
void makeSound()
{
System.out.printIn("Elephant trumpeting..."
}
}
class TestPolymorphism?2
{
public static void main(String argd[])
{
Animal animal;
animal = new Dog();
animal.makeSound();
animal = new Cat();
animal.makeSound();
animal = new Elephant();
animal.makeSound();
}
}
Output:

Dog barking...

Cat meowing...

Elephant trumpeting...

Function Overloading in Java
Function Overloading in Java occurs when there are functions having the same name but

have different numbers of parameters passed to it, which can be different in data like int,
double, float and used to return different values are computed inside the respective
overloaded method. Function overloading is used to reduce complexity and increase the
efficiency of the program by involving more functions that are segregated and can be used to
distinguish among each other with respect to their individual functionality. Overloaded
functions are related to compile-time or static polymorphism. There is also a concept of type
conversion, which is basically used in overloaded functions used to calculate the conversion
of typein variables.

Overloaded functions have the same name but different types of arguments or parameters
assigned to them. They can be used to calculate mathematical or logical operations within the
number of assigned variables in the method. The syntax of the overloaded function can be

given below, where there are up to N number of variables assigned.

Syntax:
public class OverloadedM ethod

{

public int FunctionName(int X, int y) //Two parameters in the function

{
}

/I This function takes three integer parameters
public int FunctionName(int x, int y, int z)
{

}

/I This function takes two double parameters
public double FunctionName(double x, double y)

{
}

/IMany more such methods can be done with different number of parameters
/I Code used to input the number and
public static void main(String argy[])

return (x + y); //Returns the sum of the two numbers

return (X +y + z);

return (X +y);

{
FunctionName s = new FunctionName();
System.out.printIn(s.FunctionName(10, 20));
System.out.printin(s. FunctionName(10, 20, 30));
System.out.printin(s. FunctionName(10.5, 20.5));
}

Explanation: Function overloading works by calling different functions having the same
name, but the different number of arguments passed to it. There are many coding examples
that can be shown in order to identify the benefits and disadvantages of function overloading

properly.

Operator overloading in Java

Operator overloading aims to redefine an operator that has been defined and has certain
functions to complete more detailed and specific operations and other functions. From an
object-oriented perspective, it means an operator can be defined as a method of a class, so the
function of the operator can be used to represent a certain behaviour of the object.

There are at |east two benefits to being able to perform operator overloading for numeric
operations of non-primitive types.
1. Thecodeissimpler to write and less error-prone.

2. Thecodeiseasier to read without many parentheses.

How to Implement Operator Overloading in Java
The implementation of operator overloading in Java still uses Manifold. Manifold allows you

to overload Java operators in various scenarios, such as arithmetic operators (including +,-
,*,/, and %), comparison operators (>, >=, <, <=, ==, and!=), and index operators ([]).
Please seeJavas Missing Feature: Extension Methodsfor more information about the
integration of Manifold.

Arithmetic Operator

Manifold is a function that maps each overload of an arithmetic operator to a specific name.
For example, if you define aplus(B) method in class A, that class can be called using a +

b instead of a.plus(b). The following chart describes the mappings:

Operator Method Call

c=a+b c = aplus(b)
c=a->b ¢ = aminus(b)
c=a*b c = atimes(b)
c=alb c=adiv(b)
c=a%b c=arem(b)

Those familiar with Kotlin should know that thisis an imitation of Kotlin's operator
overloading.

Let's define a numeric Num to facilitate illustration.

public class Num

{
private final int v;
public Num(int v)
{
thisv =v;
}
public Num plus(Num that)
{
return new Num(this.v + that.v);
}
public Num minus(Num that)
{
return new Num(this.v - that.v);
}
public Num times(Num that)
{
return new Num(this.v * that.v);
}
}

For the following code:
Num a= new Num(1);
Num b = new Num(2);
Numc=a+b-g

Virtual functions and runtime polymor phism
A member function that has the keyword virtual used in its declaration in the base classand is
redefined (Overridden) in the derived classisreferred to as avirtua function. The late
binding instruction instructs the compiler to execute the called function during runtime by
matching the object with the appropriately called function. Runtime Polymorphism refers to
this method.

1. No matter what kind of reference (or pointer) is used to invoke a function, virtual

functions make sure the right function is called for an object.

2. Their primary purpose isto implement runtime polymorphism.
3. Inbase classes, functions are declared using the virtual keyword.

4. Runtime resolution of function callsis carried out.

Polymorphism is a term used to describe the capacity to assume severa shapes. If there is a
hierarchy of classes connected to one another by inheritance, it happens. Polymorphism,
which is defined as "showing diverse traits in different contexts,” can be summarised as
"showing different characteristicsin avariety of situations’ and "polymorphism.”

What istheuse of virtual functions?

To achieve Runtime Polymorphism, virtual functions are primarily used. Only a base class
type pointer (or reference) can enable runtime polymorphism. A base class pointer can aso
point to both objects from the base class and those from derived classes.

Also, without even knowing the type of derived class object, we can use virtual functions to
compile alist of base class pointers and call any of the derived classes methods.

#include<iostream>
using namespace std;

classB
{
public:
virtual void s()
{
cout<<" In Base \n";
}
|3
classD: public B
{
public:
void ()
{
cout<<"In Derived \n";
}
|

int main(void)

D d; // An object of classD

B *b= &d; // A pointer of type B* pointing to d
b->5(); // prints"D::s() called"

return O,

}
Output: In Derived

What aretherulesfor virtual functions?
I. Virtual functions are not permitted to be static or friendly to other classes.

Il. Pointers or references of base class type are required to access virtual functions.
ll. Both the base class and any derived classes should use the same function prototype.

Iv. There cannot be a virtual constructor in a class. However, it might have a virtual

destroyer.

V. The base class always defines them, and the derived class redefines them.

What isruntime polymor phism?

Runtime polymorphism is the process of binding an object at runtime with a capability.

Overriding methods is one way to implement runtime polymorphism. At runtime, not at

compilation time, the Java virtual machine decides which method to invoke. Additionally

known as dynamic binding or late binding. The parent class's method is overridden in the

child class, according to this concept. The term "method overriding” refers to the situation

where a child class implements a method specifically that was supplied by one of its parent

classes. Y ou can see runtime polymorphism in the example that follows.

Example
class Test
{
public void method()
{
System.out.printin("Method 1");
}
public class DEMO extends Test
{
public void method()
{
System.out.printin("Method 2");
}
public static void main(String argg[])
{
Test test = new DEMO();
test.method();
}
}

Output: Method 2

What arethelimitations of virtual functions?

Slower: The virtual mechanism causes the function call to take a little longer, making it

harder for the compiler to optimize as it is unsure which function will be called at

compilation time. Virtua functions can make it slightly more challenging to determine where

afunction is being called from in complicated systems, which makes them more challenging

to debug.

Abstract Classin Java

In Java, abstract class is declared with the abstract keyword. It may have both abstract and

non-abstract methods (methods with bodies). An abstract is a Java modifier applicable for

classes and methods in Java but not for Variables. In this article, we will learn the use of

abstract classes in Java. Furthermore, Java abstract class is a class that cannot be initiated by

itself, it needs to be subclassed by another class to use its properties. An abstract class is

declared using the “abstract” keyword in its class definition.

[llustration of Abstract class

abstract class Shape

{

}

int color;
/I An abstract function
abstract void draw();

In Java, the following some important observations about abstract classes are as follows:

1. Aninstance of an abstract class can not be created.

Constructors are allowed.

We can have an abstract class without any abstract method.

. There can be a final method in abstract class but any abstract method in

class(abstract class) can not be declared as final or in simpler terms final method can
not be abstract itself as it will yield an error: “lllegal combination of modifiers:
abstract and final”.

We can define static methods in an abstract class.

We can use the abstract keyword for declaring top-level classes (Outer class) as well
as inner classes as abstract.

If a class contains at least one abstract method then compulsory should declare a
class as abstract.

If the Child class is unable to provide implementation to all abstract methods of the
Parent class then we should declare that Child class as abstract so that the next level
Child class should provide implementation to the remaining abstract method.

Example of Java Abstract Class

/I Abstract class
abstract class Sunstar

{
}

/I Abstraction performed using extends
class Employee extends Sunstar {
void printInfo()

abstract void printInfo();

String name = "avinash';
int age = 21;
float salary = 222.2F;

System.out.printin(name);
System.out.printin(age);
System.out.printin(salary);

}
}

Il Base class
class Base {
public static void main(String args[])

{
Sunstar s = new Employee();

s.printinfo();

}
}

Output:

avinash
21
222.2

Pure Virtual Function

Pure virtual function is a virtual function for which we don’t have implementations. An
abstract method in Java can be considered as a pure virtual function. Let’s take an example to
understand this better.

Example of Pure Virtual Function:

abstract class Dog
{

final void bark()

{
System.out.printin("woof");
}
abstract void jump(); //thisis a pure virtual function
}
class MyDog extends Dog
{
void jump()
{
System.out.printin("Jumpsin theair");
}
}
public class Runner
{
public static void main(String args[])
{
Dog obl = new MyDog();
obl.jump();
}
}

Output: Jumpsinthe air

Thisis how virtua function can be used with abstract class.

Run-Time Polymor phism

Run-time polymorphism is when a call to an overridden method is resolved at run-time
instead of compile-time. The overridden method is called through the reference variable of
the base class.

Output: Java Certification Course

https://www.edureka.co/blog/how-to-compile-run-java-program/

class Edureka

{
public void show()
{
System.out.printIn("welcome to edureka);
}
}
class Course extends Edureka
{
public void show()
{
System.out.printIn("Java Certification Program”);
}
public static void main(String argg[])
{
Edureka obl = new Cours&();
obl.show();
}
}

Points To Remember
e For a virtual function in Java, you do not need an explicit declaration. It is
any function that we have in a base class and redefined in the derived class with the
same name.
e The base class pointer can be used to refer to the object of the derived class.
e During the execution of the program, the base class pointer is used to call the derived

class functions.

This brings us to the end of this article where we have learned about the Virtual Function In

Java. | hope you are clear with all that has been shared with you in this tutorial.

Section B

Modulelll

Encapsulation

Encapsulation is a powerful mechanism for storing the data members and data methods of a
class together. It is done in the form of a secure field accessible by only the members of the
same class. Encapsulation in Java refers to integrating data (variables) and code (methods)
into a single unit. In encapsulation, a class's variables are hidden from other classes and can

only be accessed by the methods of the class in which they are found.

]

Data Methods Data Members

Q
Encapsulation

Source: simplilearn

Encapsulation in Java is an object-oriented procedure of combining the data members and
data methods of the class inside the user-defined class. It is important to declare this class as
private. It refers to the bundling of data and methods that operate on the data within a single
unit, typically a class. This concept helps in hiding the internal state of an object and only
exposing necessary functionalities through methods. By encapsulating data, Java ensures
better data security and code maintainability. Understanding encapsulation is fundamental for
building robust and organized Java applications, making a Java Course essential for
mastering this concept. Next, we will understand the Syntax to be followed while

implementing encapsulation in Java.

Syntax:

<Access Modifier> class <Class Name>

{

private <Data Members>;
private <Data Methods>;

}

For enhancing the understanding of the encapsulation process, let us go through the following

sample program.

Example:
package dc;
public classc
{
public static void main (String[] args)
{
Employee e = new Employee();
e.setName("'Robert");
e.setAge(33);
e.setEmpl D(1253);
System.out.println("Employee's name: " + e.getName());
System.out.printin("Employee's age: " + e.getAge());
System.out.printin("Employee's ID: " + e.getEmpI D());
}
}
package dc;

public class Employee
{

private String Name;
private int EmpID;
private int Age;

public int getAge()

return Age;
}
public String getName()
{
return Name;
}
public int getEmpID()
{
return EmpliD;
}

public void setAge(int newAge)
{
Age = newAge,
}
public void setName(String newName)

{

Name = newName;

}
public void setRoll(int newEmpID)

{
EmpID = newEmplID;
}
public void setEmpID(int EmpID)
{
}
}

Output:

Employee's name: Robert
Employee's age: 33
Employee's ID: 1253

Data Hiding in Java

Data hiding is a procedure done to avoid access to the data members and data methods and
their logical implementation. Data hiding can be done by using the access specifiers. We have

four access specifiers, which are as follows.

Default —f g — Protected

Public 1—\ /—> Private

Default

Default is the first line of data hiding. If any class in Java is not mentioned with an access
specifier, then the compiler will set ‘default’ as the access specifier. The access specifications

of default are extremely similar to that of the public access specifier.

Public
The public access specifier provides the access specifications to a class so that it can be

accessed from anywhere within the program.
Example:

package Simplilearn;

classvehicle

{

publicint tires;

public void display()

{

System.out.printin("l have avehicle.");

System.out.printin("lt has" + tires + " tires.");

}
}

public class Display

{

public static void main(String[] args)
{

vehicle veh = new vehicle();
veh.tires=4;

veh.display();

}

}

/[Output:
| have avehicle.

It has four tires.

Private
The private access specifier provides access to the data members, and the data methods limit
to the classitself.

Example:

package Simplilearn;

class Student

{
private int rank;
public int getRank()

{
return rank;
}
public void setRank(int rank)
{

this.rank = rank;

}

public class school

{
public static void main(String[] args)

{

Student s = new Student();
s.setRank(1022);
System.out.printin(" Student rank is" + s.getRank());

/[Output:
Student rank is 1022

Protected

The protected access specifier protects the class methods and members similar to the private
access specifier. The main differenceis that the accessis limited to the entire package, unlike
only a class with the private access specifier.

Example:

package Simplilearn;

class human

{
protected String stream;
protected void display()
{

System.out.printin("Hello, | ama" + stream + " Student");

public class Student extends human

{

public static void main(String[] args)

{
Student s = new Student();
s.stream = "Computer Science and Engineering Technology";
s.display();
}
}
/[Output:

Hello, | am a Computer Science and Engineering Technology Student

Accessor and Mutator methodsin Java

In object-oriented programming, encapsulation is a fundamental concept that refers to the
practice of hiding the implementation details of an object and providing an interface to access
its properties and behaviors. Accessor and mutator methods are two important concepts

related to encapsulation in Java.

Accessor

Accessor methods, also known as getter methods, are methods that allow you to retrieve the
value of an object’s private instance variables. These methods provide read-only access to the
object's state. By using accessor methods, you can ensure that the object's state is not

modified accidentally or maliciously by external code.

Mutator

Mutator methods, also known as setter methods, are methods that allow you to modify the
value of an object's private instance variables. These methods provide write-only access to
the object's state. By using mutator methods, you can ensure that the object's state is modified

only through a controlled interface.

Let's take alook at an example to understand the concept of accessor and mutator methods in

Java. Suppose we have a class called Person that has three private instance variables. name,
age, and email. We want to provide access to these variables using accessor and mutator
methods.

public class Person

{
private String name;
private int age;

private String email;

public String getName()

{
return name;
}
public void setName(String name)
{
this.name = name;
}
public int getAge()
{
return age;
}
public void setAge(int age)
{
this.age = age;
}
public String getEmail()
{
return email;
}
public void setEmail (String email)
{

this.email = email;

In this example, we have defined three accessor methods: getName(), getAge(), and
getEmail (), and three mutator methods: setName(), setAge(), and setEmail(). The accessor
methods return the value of the corresponding instance variable, while the mutator methods

set the value of the corresponding instance variable.
Naming Convention

The naming convention for accessor and mutator methods is important in Java. Accessor
methods should be named starting with "get" followed by the name of the variable, with the
first letter capitalized. Mutator methods should be named starting with "set" followed by the
name of the variable, with the first letter capitalized. This naming convention makes it clear
what each method does and makes the code more readabl e and maintainabl e.

Accessor and mutator methods are an essential part of encapsulation in Java. They alow you
to control access to an object's state, ensuring that it is accessed and modified only through a
controlled interface. By following the naming convention for accessor and mutator methods,

we can make your code more readable and maintainable.

Example:

Person.java
import java.util.Scanner;
public class Person
{
private String name;
private int age;
private String email;
public String getName()
{

return name;

}
public void setName(String name)

this.name = name;

}
public int getAge()
{
return age;
}
public void setAge(int age)
{
this.age = age;
}
public String getEmail()
{
return email;
}
public void setEmail (String email)
{
this.email = email;
}
public static void main(String[] args)
{

Scanner scanner = new Scanner(System.in);
Person person = new Person();
System.out.print("Enter name: ");

String name = scanner.nextLine();
person.setName(name);
System.out.print("Enter age: ");

int age = scanner.nextint();

person.setAge(age);

scanner.nextLing(); // Consume the newline character left by nextint()

System.out.print("Enter email: ");
String email = scanner.nextLine();

person.setEmail (email);

System.out.printin("\nName: " + person.getName());

System.out.printin("Age: " + person.getAge());
System.out.printin("Email: " + person.getEmail());

Output:

Name: Manoj

Age 21

Email: manoj@gmail.com

In this example, the main method creates a new instance of the Person class and uses the
mutator methods (setName, setAge, and setEmail) to set the values of the object's private
instance variables. Then, the accessor methods (getName, getAge, and getEmail) are used to

retrieve the values of the instance variables and display them on the console.

Advantage of Using Accessor and M utator

Advantage of using accessor and mutator methods is that they alows us to add validation and
other processing logic to the process of getting and setting an object's state. For example, you
could add a validation check to the "setAge(int age)" method to ensure that the age value is
within a certain range, or add formatting logic to the "getName()" method to capitalize the
first letter of the person's name.

Benefits of Encapsulation

Implementing the process of encapsulation in Java has proven to be highly effective and
beneficial while programming in real-time. The following are the significant benefits of
encapsul ation.

e A class can have complete control over its data members and data methods.

e The class will maintain its data members and methods as read-only.

¢ Data hiding prevents the user from the complex implementations in the code.

e The variables of the class can be read-only or write-only as per the programmer's
requirement.

e Encapsulation in Java provides an option of code-reusability.

e Using encapsulation will help in making changes to an existing code quickly.

e Unit testing a code designed using encapsulation is elementary.

o Standard IDEs have the support of getters and setters; this makes coding even faster.

I nterfaces and Abstract Classes

Interfaces and abstraction are essential features of object-oriented programming. They
provide away to define contracts and hide implementation details. In Java, they play acrucia

rolein achieving code flexibility and maintainability.

In Java, interfaces and abstraction are powerful concepts that enable devel opers to design and
implement flexible and extensible software. In this comprehensive guide, we’ll delve into the
concepts of interfaces and abstraction, provide code examples, discuss key differences,
explore new features in Java, and offer best practices to make your Java code more robust

and maintainable.

Interface: An Introduction

An interface is a contract that specifies a set of methods without providing their
implementations. It acts as a blueprint for classes that implement it. Interfaces enable
multiple classes to share a common set of methods without forcing them into a specific

inheritance hierarchy.

Declaring interfaces:

An interface is declared by using the interface keyword. It provides total abstraction; means
all the methods in an interface are declared with the empty body, and al the fields are public,
static and final by default. A class that implements an interface must implement all the

methods declared in the interface.

Syntax:

interface <interface_name>

{

/I declare constant fields
/I declare methods that abstract
Il by default.

Defining an Interface
In Java, you define an interface using the interface keyword:

public interface Shape
{
double area();

void draw();

Implementing an I nterface:
A class implements an interface by using the implements keyword. It must provide
implementations for al the methods defined in the interface:
public class Circle implements Shape
{
private double radius;
public Circle(double radius)

{
this.radius = radius;
}
@Override
public double area()
{
return Math.PI * radius* radius;
}
@Override
public void draw()
{
System.out.printIn("Drawing acircle");
}

Extending I nterfaces

One interface can inherit another by the use of keyword extends. When a class implements an
interface that inherits another interface, it must provide an implementation for all methods

required by the interface inheritance chain.
Example 1:

interface A
{
void methodl();
void method2();
}
/I B now includes methodl and method2
interface B extends A

{
void method3();

}
/I the class must implement al method of A and B.

class gfg implements B

{
public void methodl()
{
System.out.printin("Method 1");
}
public void method2()
{
System.out.printin("Method 2");
}

public void method3()

System.out.printin("Method 3");

}

Example 2:
interface Student

{
public void data();

}

class avi implements Student

{
public void data ()

{
String name="avinash";
int rollno=68,;
System.out.printin(name);

System.out.printin(rolIno);

}

public classinter_face

{
public static void main (String args [])
{
avi h= new avi();

h.data();

Output:

avinash

68
In a Simple way, the interface contains multiple abstract methods, so write the
implementation in implementation classes. If the implementation is unable to provide an
implementation of all abstract methods, then declare the implementation class with an
abstract modifier, and complete the remaining method implementation in the next created
child classes. It is possible to declare multiple child classes but at final we have completed

the implementation of all abstract methods.\
In general, the development processis step by step:

Level 1 — interfaces: It contains the service details.

Level 2 — abstract classes: It contains partial implementation.

Level 3 —implementation classes: It contains all implementations.

Level 4 — Final Code / Main Method: It have access of all interfaces data.

Key Pointsto Remember (Interface)

o Interfaces define a contract with method signatures but no method bodies.
e A class can implement multiple interfaces.
o Interfaces are used to achieve multiple inheritances in Java.

e Interfaces can be used to define constants (variables with public static final).

Advantages of Interfacesin Java
The advantages of using interfacesin Java are asfollows:

e Without bothering about the implementation part, we can achieve the security of

the implementation.

e InJava, multiple inheritances are not allowed, however, you can use an interface to

make use of it as you can implement more than one interface.

Abstraction: An Introduction

Abstraction is the process of hiding complex implementation details and showing only the
necessary features of an object. In Java, you achieve abstraction using abstract classes and
methods.

Abstract Classes
An abstract class is a class that cannot be instantiated but can contain abstract methods

(methods without implementation) and concrete methods (methods with implementation).

public abstract class Vehicle

{
public abstract void start();
public void stop()
{
System.out.printin("V ehicle stopped");
}
}

Abstract Methods
An abstract method is declared using the abstract keyword and must be implemented by any

concrete subclass.

public class Car extends Vehicle

{
@Override

public void start()

{
System.out.printin("Car started");

Key Pointsto Remember:

e Abstract classes can’t be instantiated.
e Abstract classes can have both abstract and concrete methods.
e Subclasses of an abstract class must implement its abstract methods.

e Abstraction is used to hide implementation details.

Key Differences

1. Interfacevs. Abstract Class
An interface can’t have instance variables, while an abstract class can. A class can implement
multiple interfaces, but it can extend only one abstract class. Interfaces provide a strong

contract, and multiple inheritance is achieved through them.

2. Method Definitions
Interfaces define methods without implementation, while abstract classes can contain both

abstract and concrete methods.

3. Usage
Use interfaces when you want to define a contract for a group of classes. Use abstract classes
when you want to provide a common base class with some default behavior.

ModulelV
Exception Handling

An exception is an error event that can happen during the execution of a program and disrupts
its normal flow. Java provides a robust and object-oriented way to handle exception scenarios
known as Java Exception Handling.

Exceptions in Java can arise from different kinds of situations such as wrong data entered by
the user, hardware failure, network connection failure, or a database server that is down. The

code that specifies what to do in specific exception scenarios is called exception handling.

Throwing and Catching Exceptions

Java creates an exception object when an error occurs while executing a statement. The
exception object contains a lot of debugging information such as method hierarchy, line
number where the exception occurred, and type of exception.
If an exception occurs in a method, the process of creating the exception object and handing
it over to the runtime environment is called “throwing the exception”. The normal flow of the
program halts and the Java Runtime Environment (JRE) tries to find the handler for the
exception. Exception Handler is the block of code that can process the exception object.

e Thelogic to find the exception handler begins with searching in the method where the

error occurred.
« If no appropriate handler is found, then it will move to the caller method.
e« Andsoon.

So. if the method’s call stack is A->B->C and an exception is raised in method C, then the
search for the appropriate handler will move from C->B->A.

If an appropriate exception handler is found, the exception object is passed to the handler to
process it. The handler is said to be “catching the exception”. If there is no appropriate
exception handler, found then the program terminates and prints information about the
exception to the console. Java Exception handling framework is used to handle runtime errors
only. The compile-time errors have to be fixed by the developer writing the code else the

program won’t execute.
Java Exception Handling Keywor ds

Java provides specific keywords for exception handling purposes.

1. throw — We know that if an error occurs, an exception object is getting created and
then Java runtime starts processing to handle them. Sometimes we might want to
generate exceptions explicitly in our code. For example, in a user authentication
program, we should throw exceptions to clients if the password isnull.

The throw keyword is used to throw exceptions to the runtime to handle it.

2. throws— When we are throwing an exception in a method and not handling it, then
we have to use the throws keyword in the method signature to let the caller program
know the exceptions that might be thrown by the method. The caller method might

handle these exceptions or propagate them to its caller method using

the throws keyword. We can provide multiple exceptions in the throws clause, and it
can be used with the main() method also.

3. try-catch — We use the try-catch block for exception handling in our code. try is the
start of the block and catch is at the end of the try block to handle the exceptions. We
can have multiple catch blocks with atry block. The try-catch block can be nested
too. The catch block requires a parameter that should be of type Exception.

4. finally — thefinaly block is optional and can be used only with atry-catch block.
Since exception halts the process of execution, we might have some resources open
that will not get closed, so we can use the finally block. The finally block always gets
executed, whether an exception occurred or not.

Example:

ExceptionHandling.java

package com.journaldev.exceptions;
import java.io.FileNotFoundException;
import java.io.lOException;

public class ExceptionHandling

{

public static void main(String[] args) throws FileNotFoundException, |OException

{
try
{
testException(-5);
testException(-10);
}
catch(FileNotFoundException €)
{
e.printStackTrace();
}
catch(IOException €)
{

e.printStackTrace();

}
finaly

{

System.out.printin("Releasing resources');

}
testException(15);

public static void testException(int i) throws FileNotFoundException, |OException

{
if (i <0)
{
FileNotFoundExceptionmyException=new FileNotFoundException
("Negative Integer " + i);
throw myException;
}
eseif (i >10)
{
throw new |OException("Only supported for index 0 to 10");
}
}

Explanations:
e ThetestException() method is throwing exceptions using the throw keyword. The
method signature uses thethrowskeyword to let the caler know the type of

exceptions it might throw.

e In themain() method, | am handling exceptions using thetry-catch block in
the main() method. When | am not handling it, | am propagating it to runtime with

the throws clause in the main() method.

e ThetestException(-10) never gets executed because of the exception and then
the finally block is executed.

The printStackTrace() is one of the useful methods in the Exception class for debugging

PUrpOSES.

This code will output the following:

Output:

java.io.FileNotFoundException: Negative Integer -5
at

com.journal dev.exceptions.ExceptionHandling.testException(ExceptionHandling.java: 24)
at com.journal dev.exceptions.ExceptionHandling.main(ExceptionHandling.java: 10)

Releasing resources

Exception in thread "main” java.io.lOException: Only supported for index 0 to 10
at

com.journal dev.exceptions.ExceptionHandling.testException(ExceptionHandling.java: 27)
at com.journal dev.exceptions.ExceptionHandling.main(ExceptionHandling.java: 19)

Someimportant pointsto note:
e We can’t have catch or finally clause without atry statement.
o A try statement should have either catch block or finally block, it can have both
blocks.
e We can’t write any code between try-catch-finally blocks.
e We can have multiple catch blocks with asingle try statement.
e try-catch blocks can be nested similar to if-else statements.

e We can have only one finally block with atry-catch statement.
Java Exception Hierarchy

As stated earlier, when an exception is raised an exception object is getting created. Java
Exceptions are hierarchical and inheritance is used to categorize different types of
exceptions. Throwable is the parent class of Java Exceptions Hierarchy and it has two child
objects — Error and Exception. Exceptions are further divided into Checked Exceptions and

Runtime Exceptions.
1. Errors: Errors are exceptional scenarios that are out of the scope of application, and
it’s not possible to anticipate and recover from them. For example, hardware failure,
Java virtual machine (JVM) crash, or out-of-memory error. That’s why we have a
separate hierarchy of Errors and we should not try to handle these situations. Some of

the common Errors are OutOfMemoryError and StackOverflowError.

2. Checked Exceptions: Checked Exceptions are exceptional scenarios that we can
anticipate in a progran and try to recover from it. For
example, FileNotFoundException. We should catch this exception and provide a
useful message to the user and log it properly for debugging purposes.
The Exception is the parent class of all Checked Exceptions. If we are throwing a
Checked Exception, we must catch it in the same method, or we have to propagate it
to the caller using the throws keyword.

3. Runtime Exception: Runtime Exceptions are caused by bad programming. For
example, trying to retrieve an element from an array. We should check the length of
the array first before trying to retrieve the element otherwise it might
throw ArraylndexOutOfBoundException at runtime. RuntimeException is the parent
class of all Runtime Exceptions. If we arethrowing any Runtime Exceptionin a
method, it’s not required to specify them in the method signature throws clause.

Runtime exceptions can be avoided with better programming.

Custom Exception

In Java, we can create our own exceptions that are derived classes of the Exception class.
Creating our own Exception is known as custom exception or user-defined exception.
Basically, Java custom exceptions are used to customize the exception according to user
need.

Consider the example in which InvalidAgeException class extends the Exception class. Using
the custom exception, we can have your own exception and message. Here, we have passed a
string to the constructor of superclass i.e. Exception class that can be obtained using

getMessage() method on the object we have created.

Why use custom exceptions?

Java exceptions cover amost all the genera type of exceptions that may occur in the

programming. However, we sometimes need to create custom exceptions.

Following are few of the reasons to use custom exceptions:

To catch and provide specific treatment to a subset of existing Java exceptions. Business
logic exceptions: These are the exceptions related to business logic and workflow. It is useful
for the application users or the developers to understand the exact problem. In order to create

custom exception, we need to extend Exception class that belongs to java.lang package.

Consider the following example, where we create a custom exception named
WrongFileNameException:

public class WrongFileNameException extends Exception

{
public WrongFileNameException(String errorM essage)
{
super(errorM essage);
}
}
Example:

Let's see a simple example of Java custom exception. In the following code, constructor of
InvalidAgeException takes a string as an argument. This string is passed to constructor of
parent class Exception using the super() method. Also the constructor of Exception class can

be called without using a parameter and calling super() method is not mandatory.

TestCustomExceptionl.java
/I class representing custom exception
class InvalidAgeException extends Exception
{
public InvalidAgeException (String str)
{

/I calling the constructor of parent Exception
super(str);

/I class that uses custom exception InvalidAgeException
public class TestCustomExceptionl

{

/I method to check the age
static void validate (int age) throws InvalidAgeException
{
if(age < 18)
{
/I throw an object of user defined exception
throw new InvalidAgeException("age is not valid to vote");

else

System.out.printIn("welcome to vote");

/I main method
public static void main(String args[])
{

try

{
/I calling the method

validate(13);
}
catch (InvalidAgeException ex)

{
System.out.printIn(" Caught the exception");

/I printing the message from InvalidA geException object
System.out.printIn("Exception occured: " + ex);

}
System.out.printin("rest of the code...");

rac TestCustomExceptionl.java
TestCustomExceptionl

e is not wvalid to wvote

: InvalidAgeException: a

L=l

File Handling in Java

In Java, with the help of File Class, we can work with files. This File Class is inside the
javaio package. The File class can be used by creating an object of the class and then
specifying the name of thefile.

Why File Handling is Required?

File Handling is an integral part of any programming language as file handling enables us to
store the output of any particular program in afile and allows us to perform certain operations
onit.

In ssimple words, file handling means reading and writing data to afile.

Il 'mporting File Class

import javaio.File;

class GFG

{
public static void main(String[] args)
{

Il File name specified
File obj = new File("myfile.txt");

System.out.printin("File Created!");

Output:
File Created!

File Operationsin Java

In Java, a File is an abstract data type. A named location used to store related information is
known as a File. There are severa File Operations like creating a new File, getting
information about File, writing into a File, reading from a File and deleting a File. Before
understanding the File operations, it is required that we should have knowledge of Stream
and File methods. If you have knowledge about both of them, you can skip it.

Stream
A series of data is referred to as a stream. In Java, Stream is classified into two types, i.e.,

Byte Stream and Character Stream.

o Byte Stream: Byte Stream is mainly involved with byte data. A file handling process
with a byte stream is a process in which an input is provided and executed with the

byte data.

e Character Stream: Character Stream is mainly involved with character data. A file
handling process with a character stream is a process in which an input is provided

and executed with the character data.

We can perform the following operation on afile:

e Create aFile

e Get File Information
e Writeto a File

e Read from a File

e Delete a File

CreateaFile

Create a File operation is performed to create a new file. We use the createNewFile() method
of file. The createNewFile() method returns true when it successfully creates a new file and
returns false when the file already exists. Let's take an example of creating a file to

understand how we can use the createNewFile() method to perform this operation.

Example:
CreateFilejava
/I lmporting File class
import java.io.File;
/I lmporting the IOException class for handling errors
import java.io.lOException;
class CreateFile
{
public static void main(String args[])
{
try

/I Creating an object of afile

File fO = new File("D:FileOperationExample.txt");

if (fO.createNewFilg())

{

System.out.printin("File " + fO.getName() + " is created
successfully.");

}

else

{
System.out.printin("File is already exist in the directory.");

}

}
catch (IOException exception)

{

System.out.printin("An unexpected error is occurred.");

exception.printStack Trace();

Output:
File Operationsin Java
File Operationsin Java

Explanation: In the above code, we import the File and |OException class for performing
file operation and handling errors, respectively. We create the fO object of the File class and
specify the location of the directory where we want to create a file. In the try block, we call
the createNewFile() method through the fO object to create a new file in the specified
location. If the method returns false, it will jump to the else section. If there is any error, it
gets handled in the catch block.

WritetoaFile

The next operation which we can perform on afile is "writing into a file". In order to write
datainto afile, we will use the FileWriter class and its write() method together. We need to
close the stream using the close() method to retrieve the allocated resources. Let's take an

example to understand how we can write datainto afile.

Example:
WriteToFilejava

/I lmporting the FiléWriter class

import javaio.FileWriter;

// I/mporting the IOException class for handling errors
import java.io.lOException;

class WriteToFile

{

public static void main(String[] args)
{

try

{
FileWriter fwrite = new FileéWriter("D:FileOperationExample.txt");
/[writing the content into the FileOperationExample.txt file
fwritewrite("A named location used to store related information is
referred toasaFile");
/I Closing the stream
fwrite.close();
System.out.printIn("Content is successfully wrote to thefile.");
}
catch (IOException €)
{
System.out.println("Unexpected error occurred”);
e.printStackTrace();
}
}
}
Output:

File Operationsin Java
File Operationsin Java

Explanation: In the above code, we import the java.io.FileWriter and java.io.lOException
classes. We create a class WriteToFile, and in its main method, we use the try-catch block. In
the try section, we create an instance of the FileWriter class, i.e., fwrite. We call the write
method of the FileWriter class and pass the content to that function which we want to write.
After that, we call the close() method of the FileWriter class to close the file stream. After
writing the content and closing the stream, we print a custom message. If we get any error in
the try section, it jumps to the catch block. In the catch block, we handle the IOException and
print a custom message.

Read from a File

The next operation which we can perform on afileis "read from afile". In order to write data

into afile, we will use the Scanner class. Here, we need to close the stream using the close()
method. We will create an instance of the Scanner class and use the hasNextLine() method
nextLine() method to get data from the file. Let's take an example to understand how we can
read data from afile.

Example:

ReadFromFilejava

/I lmporting the File class

import java.io.File;

/I lmporting FileNotFoundException class for handling errors
import java.io.FileNotFoundException;

/I I/mporting the Scanner class for reading text files

import java.util.Scanner;

class ReadFromFile

{
public static void main(String[] args)
{
try
{
/I Create f1 object of the fileto read data
Filefl = new File("D:FileOperationExample.txt");
Scanner dataReader = new Scanner(fl);
while (dataReader.hasNextLing()) {
String fileData = dataReader.nextLine();
System.out.printin(fileData);
}
dataReader.close();
}
catch (FileNotFoundException exception)
{
System.out.printin("Unexcpected error occurred!");
exception.printStack Trace();
}

Output:
File Operationsin Java

Explanation: In the above code, we import the "java.util.Scannner”, "java.io.File" and
"Java.io.lOException" classes. We create a class ReadFromFile, and in its main method, we
use the try-catch block. In the try section, we create an instance of both the Scanner and the
File classes. We pass the File class object to the Scanner class object and then iterate the
scanner class object using the "While" loop and print each line of the file. We also need to
close the scanner class object, so we use the closg() function. If we get any error in the try
section, it jumps to the catch block. In the catch block, we handle the IOException and print a
custom message.

DeleteaFile:

The next operation which we can perform on afile is "deleting a file". In order to delete a
file, we will use the delete() method of the file. We don't need to close the stream using the
close() method because for deleting a file, we neither use the FileWriter class nor the Scanner
class. Let's take an example to understand how we can write datainto afile.

Example:

DeleteFilejava

/I lmporting the File class

import java.io.File;

class DeleteFile
{
public static void main(String[] args)
{
File fO = new File("D:FileOperationExample.txt");
if (fO.delete())
{
System.out.printin(fO.getName()+ " file is deleted successfully.");
}
else

System.out.printIn("Unexpected error found in deletion of thefile.");

Output:
File Operationsin Java

Explanation: In the above code, we import the File class and create a class DeleteFile. In the
main() method of the class, we create fO object of the file which we want to delete. In the if
statement, we call the delete() method of the file using the fO object. If the delete() method
returns true, we print the success custom message. Otherwise, it jumps to the else section

where we print the unsuccessful custom message.

File Streamsin Java

In Java, a sequence of data is known as a stream. This concept is used to perform 1/O
operations on a file. You can create a file stream from the filename, a File object, or a
FileDescriptor. object. Use file streams to read data from or write data to files on the file

system.

There are two types of streamsin java:
1. File Input Stream
2. File Output Stream

1. File Input Stream:

The Java InputStream class is the superclass of all input streams. The input stream is used to
read data from numerous input devices like the keyboard, network, etc. InputStream is an
abstract class, and because of this, it is not useful by itself. However, its subclasses are used

to read data. There are several subclasses of the InputStream class, which are as follows:

e AudiolnputStream

e ByteArraylnputStream
e FilelnputStream

e FilterInputStream

e StringBufferlnputStream

ObjectlnputStream

Creating an Input Stream:

Syntax:

/I Creating an InputStream

InputStream obj = new FilelnputStream();

Here, an input stream is created using FilelnputStream.

Note: We can create an input stream from other subclasses as well as InputStream.

Methods of Input Stream:

1 read() Reads one byte of data from the input stream.

2 read(byte[] array)() Reads byte from the stream and stores that byte in the specified
array.

3 mark() It marks the position in the input stream until the data has been

read.

4 available() Returns the number of bytes available in the input stream.

5 markSupported() It checks if the mark() method and the reset() method is

supported in the stream.

6 reset() Returns the control to the point where the mark was set inside

the stream.

7 skips() Skips and removes a particular number of bytes from the input
stream.

8 close() Closes the input stream.

2. Output Stream:

The output stream is used to write data to numerous output devices like the monitor, file, etc.
OutputStream is an abstract superclass that represents an output stream. OutputStream is an
abstract class and because of this, it is not useful by itself. However, its subclasses are used to

write data. There are several subclasses of the OutputStream class which are as follows:

e ByteArrayOutputStream

e FileOutputStream

e StringBufferOutputStream
e ObjectOutputStream

e DataOutputStream

e PrintStream

Creating an Output Stream

Syntax:

/I Creating an OutputStream

OutputStream obj = new FileOutputStream();

Here, an output stream is created using FileOutputStream.

Note: We can create an output stream from other subclasses as well as OutputStream.

Methods of Output Stream:
1. write() Writes the specified byte to the output stream.

2. write(byte[] array) Writes the bytes which are inside a specific array to the output stream.
3. closg() Closes the output stream.
4. flush() Forces to write al the data present in an output stream to the

destination.

